作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的教案,借助教案可以有效提升自己的教學能力。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的高中數(shù)學試講教案,希望對大家有所幫助。
提出問題:
新課程認為知識不是單方面通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(教師指導和同學的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。通過多年教學實踐和對新課程的認識,我認為若遵循這個原則進行數(shù)學課堂教學,學生的學習將是一種高效的活動。
教材中的地位:
本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進一步學習了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學習的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。
設(shè)計背景:
在新教材的教學中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學問題的過程,它的應(yīng)用性,實用性更明顯的體現(xiàn)出來。學數(shù)學重在培養(yǎng)學生的思維品質(zhì),經(jīng)過多年的數(shù)學學習,學生還是害怕學數(shù)學,尤其高中的數(shù)學,它對于學生來說顯得很抽象。所以如果再讓讓學生感到數(shù)學離我們的生活太遠,那么將很難激發(fā)他們的學習愛好。所以在教學中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學習函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學生學會研究一個新的具體函數(shù)的方法比學會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導,使他們逐漸建立。數(shù)學中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學生領(lǐng)悟其中的思想,運用其中的方法去學習新的知識,是非常重要的。
教學目標:
一、知識:
理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。
二、過程與方法:
由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題。
三、能力:
1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學生觀察,分析和歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
2.通過對指數(shù)函數(shù)的研究,使學生能把握函數(shù)研究的基本方法。
教學過程:
由實際問題引入:
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細胞分裂x次后,得到的細胞的個數(shù)y與x之間的關(guān)系是什么?
分裂次數(shù)與細胞個數(shù)
1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x
歸納:y=2x
問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過x年后剩留量y與x的關(guān)系是什么?
經(jīng)過1年,剩留量y=1×84%=;經(jīng)過2年,剩留量y=×=?經(jīng)過x年,剩留量y=
尋找異同:
你能從以上的兩個例子中得到的關(guān)系式里找到什么異同點嗎?
共同點:變量x與y構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。
那么,今天我們來學習新的一個基本函數(shù):指數(shù)函數(shù)
得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。
在以前我們學過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一
般形式上的系數(shù)都有相應(yīng)的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當x>0時,恒等于0,沒有研究價值;當x≤0時,無意義。
若a
若a=1,則=1,是一個常量,也沒有研究的必要。
所以有規(guī)定且a>0且a≠1。
由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。
進一步理解函數(shù)的定義:
指數(shù)函數(shù)的定義域:在我們學過的指數(shù)運算中,指數(shù)可以是有理數(shù),當指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學過的有理指數(shù)冪的性質(zhì)和運算法則都適用,所以指數(shù)函數(shù)的定義域為R。
研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。
學習函數(shù)的一個很重要的目標就是應(yīng)用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導學生從定義域,值域,單調(diào)性,奇偶性,與坐標軸的交點情況著手開始。
首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。
我們以具體函數(shù)入手,讓學生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。
要求學生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。
數(shù)學發(fā)展的'歷史表明,每一個重要的數(shù)學概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學生而言,數(shù)學的知識應(yīng)該是一個數(shù)學化的過程,即通過對常識材料進行細致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數(shù)學研究和數(shù)學實驗的過程中進行設(shè)計。雖然學生的思維不一定真實的重演了人類對數(shù)學知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學數(shù)學化,從而才使學生對數(shù)學學習產(chǎn)生了樂趣,對數(shù)學的研究方法有了一定的了解。
雖然學生要學的數(shù)學是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學習活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)問題情景作為教學設(shè)計的重要的內(nèi)容之一。教師應(yīng)該把教學設(shè)計成學生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學能力。
教師的地位應(yīng)由主導者轉(zhuǎn)變?yōu)橐龑д撸菇虒W活動真正成為學生的活動。在教學過程中,把學習的主動權(quán)交給學生,在時間和空間上保證學生在教師的指導下,學生能自己獨立自主的探究學習。使教學活動始終處于學生的“最近發(fā)展區(qū)”,使每一個學生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高??傊?,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學策略優(yōu)化課堂教學,培養(yǎng)學生探究學習與創(chuàng)新學習能力將是我們在數(shù)學教學中要繼續(xù)探究的課題。
教學準備
教學目標
運用充分條件、必要條件和充要條件
教學重難點
運用充分條件、必要條件和充要條件
教學過程
一、基礎(chǔ)知識
(一)充分條件、必要條件和充要條件
1.充分條件:如果A成立那么B成立,則條件A是B成立的充分條件。
2.必要條件:如果A成立那么B成立,這時B是A的必然結(jié)果,則條件B是A成立的必要條件。
3.充要條件:如果A既是B成立的充分條件,又是B成立的必要條件,則A是B成立的充要條件;同時B也是A成立的充要條件。
(二)充要條件的判斷
1若成立則A是B成立的充分條件,B是A成立的必要條件。
2.若且BA,則A是B成立的充分且不必要條件,B是A成立必要且非充分條件。
3.若成立則A、B互為充要條件。
證明A是B的充要條件,分兩步:__
(1)充分性:把A當作已知條件,結(jié)合命題的前提條件推出B;
(2)必要性:把B當作已知條件,結(jié)合命題的前提條件推出A。
二、范例選講
例1.(充分必要條件的判斷)指出下列各組命題中,p是q的什么條件?
(1)在△ABC中,p:A>B q:BC>AC;
(2)對于實數(shù)x、y,p:x+y≠8 q:x≠2或y≠6;
(3)在△ABC中,p:SinA>SinB q:tanA>tanB;
(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
解:(1)p是q的充要條件(2)p是q的充分不必要條件
(3)p是q的既不充分又不必要條件(4)p是q的充分不必要條件
練習1(變式1)設(shè)f(x)=x2-4x(x∈R),則f(x)>0的一個必要而不充分條件是( C )
A、x4 C、│x-1│>1 D、│x-2│>3
例2.填空題
(3)若A是B的充分條件,B是C的充要條件,D是C的必要條件,則A是D的條件.
答案:(1)充分條件(2)充要、必要不充分(3)A=> B C=> D故填充分。
練習2(變式2)若命題甲是命題乙的充分不必要條件,命題丙是命題乙的必要不充分條件,命題丁是命題丙的充要條件,則命題丁是命題甲的( )
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分又不必要條件
例4.(證明充要條件)設(shè)x、y∈R,求證:|x+y|=|x|+∣y∣成立的充要條件是xy≥0.
證明:先證必要性:即|x+y|=|x|+∣y∣成立則xy≥0,
由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;
再證充分性即:xy≥0則|x+y|=|x|+∣y∣
若xy≥0即xy>0或xy=0
下面分類證明
(Ⅰ)若x>0,y>0則|x+y|=x+y=|x|+∣y∣
(Ⅱ)若x
(Ⅲ)若xy=0,不妨設(shè)x=0則|x+y|=∣y∣=|x|+∣y∣
綜上所述: |x+y|=|x|+∣y∣
∴|x+y|=|x|+∣y∣成立的充要條件是xy≥0.
例5.已知拋物線y=-x2+mx-1點A(3,0) B(0,3),求拋物線與線段AB有兩個不同交點的充要條件.
解:線段AB:y=-x+3(0≤x≤3)-----------(1)
拋物線: y=-x2+mx-1---------------(2)
(1)代入(2)得:x2-(1+m)x+4=0--------(3)
拋物線y=-x2+mx-1與線段AB有兩個不同交點,等價于方程(3)在[0,3]上有兩個不同的解.
教學準備
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件。
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并規(guī)定0向量與任何向量的數(shù)量積為0。
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的`符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定。
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。
一、教學目標
1、在初中學過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關(guān)系的學習,培養(yǎng)學生邏輯推理能力
4、初步培養(yǎng)學生反證法的數(shù)學思維。
二、教學分析
重點:四種命題;難點:四種命題的關(guān)系
1。本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進一步講解反證法。
2。教學時,要注意控制教學要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3.“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)
1。以故事形式入題
2多媒體演示
四、教學過程
(一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學生學習興趣
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖: 通過復習舊知識,打下學習否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的'逆否命題。
(四)組織討論:
讓學生歸納什么是否命題,什么是逆否命題。
例1及例2
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真
引導學生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明,同學們踴躍發(fā)言。
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)
逆否命題若¬q則¬p。(交換原命題的條件和結(jié)論,并且同時否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真.
(2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。
同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1.設(shè)原命題是“若
斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判
2.設(shè)原命題是“當 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.
一、教學目標
1、知識與技能
(1)理解對數(shù)的概念,了解對數(shù)與指數(shù)的關(guān)系;
(2)能夠進行指數(shù)式與對數(shù)式的互化;
(3)理解對數(shù)的性質(zhì),掌握以上知識并培養(yǎng)類比、分析、歸納能力;
2、過程與方法
3、情感態(tài)度與價值觀
(1)通過本節(jié)的學習體驗數(shù)學的嚴謹性,培養(yǎng)細心觀察、認真分析
分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數(shù)學的科學功能、符號功能和工具功能,培養(yǎng)直覺觀察、
探索發(fā)現(xiàn)、科學論證的良好的數(shù)學思維品質(zhì)、
二、教學重點、難點
教學重點
(1)對數(shù)的'定義;
(2)指數(shù)式與對數(shù)式的互化;
教學難點
(1)對數(shù)概念的理解;
(2)對數(shù)性質(zhì)的理解;
三、教學過程:
四、歸納總結(jié):
1、對數(shù)的概念
一般地,如果函數(shù)ax=n(a0且a≠1)那么數(shù)x叫做以a為底n的對數(shù),記作x=logan,其中a叫做對數(shù)的底數(shù),n叫做真數(shù)。
2、對數(shù)與指數(shù)的互化
ab=n?logan=b
3、對數(shù)的基本性質(zhì)
負數(shù)和零沒有對數(shù);loga1=0;logaa=1對數(shù)恒等式:alogan=n;logaa=nn
五、課后作業(yè)
課后練習1、2、3、4
一.教材分析。
( 1)教材的地位與作用:《等比數(shù)列的前n項和》選自《普通高中課程標準數(shù)學教科書·數(shù)學
( 5),是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思
想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。
(2)從知識的體系來看:“等比數(shù)列的前n項和”是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對函數(shù)思想的理解,也為以后學數(shù)列的求和,數(shù)學歸納法等做好鋪墊
二.學情分析。
( 1)學生的已有的知識結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項公式和求和公式與方法,等比數(shù)列的概念與通項公式。
( 2)教學對象:高二理科班的學生,學習興趣比較濃,表現(xiàn)欲較強,邏輯思維能力也初步形成,具有一定的分析問題和解決問題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴謹。
(3)從學生的認知角度來看:學生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
三.教學目標。
根據(jù)教學大綱的要求、本節(jié)教材的特點和本班學生的認知規(guī)律,本節(jié)課的教學目標確定為:(1)知識技能目標————理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問題。
(2)過程與方法目標————通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
(3)情感,態(tài)度與價值觀————培養(yǎng)學生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗,感受數(shù)學的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美。
四.重點,難點分析。
教學重點:公式的推導、公式的特點和公式的運用。
教學難點:公式的推導方法及公式應(yīng)用中q與1的關(guān)系。
五.教法與學法分析.
培養(yǎng)學生學會學習、學會探究是全面發(fā)展學生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養(yǎng)學生學會學習、學會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的?!边@個觀點從教學的角度來理解就是:知識不是通過教師傳授得到的`,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(在教師指導和學習伙伴的幫助下)協(xié)作,主動建構(gòu)而
獲得的,建構(gòu)主義教學模式強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學方法,讓老師的主導性和學生的主體性有機結(jié)合,使學生能夠愉快地自覺學習,通過學生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學模型,再運用所得理論和方法去解決問題。一句話:還課堂以生命力,還學生以活力。
六.課堂設(shè)計
(一)創(chuàng)設(shè)情境,提出問題。(時間設(shè)定:3分鐘)
[利用投影展示]在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?
[設(shè)計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點]
提出問題1:同學們,你們知道西薩要的是多少粒小麥嗎?
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項公式的推導及簡單應(yīng)用 教材難點:靈活應(yīng)用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式
二、教學目標分析
1. 知識目標
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導
2.能力目標
1)學會通過實例歸納概念
2)通過學習等比數(shù)列的.通項公式及其推導學會歸納假設(shè)
3)提高數(shù)學建模的能力
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學是來源于現(xiàn)實生活并應(yīng)用于現(xiàn)實生活
3)數(shù)學是豐富多彩的而不是枯燥無味的
三、教學對象及學習需要分析
1、 教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設(shè)較弱,應(yīng)加強這方面教學
2、學習需要分析:
四. 教學策略選擇與設(shè)計
1.課前復習
1)復習等差數(shù)列的概念及通向公式
2)復習指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導入
一.教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
1.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學對象;
2.過程與方法
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習,思考,交流,討論和概括,從而更好地完成本節(jié)課的教學目標。
2.教學手段:在教學中使用投影儀來輔助教學。
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學?!薄ⅰ鞍嗉墶钡?,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的.內(nèi)容。
設(shè)計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學2004年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設(shè)計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,高一(4)班的一位同學,那么a,b與集合A分別有什么關(guān)系?由此引導學生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題。
5.教師引導學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題。
6.教師引導學生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設(shè)計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
呢?如何表示?請同學們通過預(yù)習教材.
五.板書分析
第一章:空間幾何體
1.1.1柱、錐、臺、球的結(jié)構(gòu)特征
一、教學目標
1.知識與技能
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學用具
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀
四、教學思路
(一)創(chuàng)設(shè)情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
(二)、研探新知
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的.幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7練習1、2(1)(2)
課本P8習題1.1第2、3、4題
五、歸納整理
由學生整理學習了哪些內(nèi)容
六、布置作業(yè)
課本P8練習題1.1B組第1題
課外練習課本P8習題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結(jié)果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習
課本P12練習1、2P18習題1.2A組1
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結(jié)果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學生思考、討論和交流,如何構(gòu)造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
教學目的:
掌握圓的標準方程,并能解決與之有關(guān)的問題
教學重點:
圓的標準方程及有關(guān)運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習。
練習:⒈說出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
⒉指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結(jié)練習P771,2,3,4
五、作業(yè)P811,2,3,4
幼兒園教案《高中數(shù)學試講教案全部(集錦十篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼兒園教案而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了高中數(shù)學教案專題,希望您能喜歡!
相關(guān)推薦
小學數(shù)學被運用到生活的各個方面,作為一位盡職敬業(yè)的小學數(shù)學教師,為了讓學生可以舉一反三,充分理解數(shù)學要義,老師的工作必然離不開教案的撰寫!那么,你知道小學數(shù)學教案可以從哪些方面來寫呢?幼兒教師教育網(wǎng)編輯花時間專門編輯了小學數(shù)學試講優(yōu)質(zhì)教案,強烈建議你能收藏本頁以方便閱讀!...
特選文獻“高中數(shù)學教案”將向您展示更多關(guān)于知識和見解的內(nèi)容。教案和課件是教師工作的一部分,每位教師都對編寫教案和制作課件這一過程很熟悉。教師應(yīng)注重提高教案的質(zhì)量,以實際提高教學效果。以下資源僅供參考,希望大家關(guān)注!...
老師根據(jù)事先準備好的教案課件內(nèi)容給學生上課,每個老師都需要細心籌備教案課件。教案是提高學生學習效果的重要手段,如何寫優(yōu)質(zhì)課的教案?幼兒教師教育網(wǎng)的編輯以您的要求為中心呈現(xiàn)了這份實用的“高中數(shù)學教案”,相信您可以在這篇文章中找到您所需的任何信息!...
您可以考慮閱讀一下“高中數(shù)學教案”我們認為它對您會有所啟發(fā)。老師每一堂上一般都需要一份教案課件,寫好教案課件是每位老師必須具備的基本功。教案是教學體系的有效支撐。請仔細閱讀以下提示信息!...
作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的教案,借助教案可以有效提升自己的教學能力。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的高中數(shù)學試講教案,希望對大家有所幫助。高中數(shù)學試講萬能模板 篇11.課題填寫課題名稱(高中代數(shù)類課題)2.教學目標(1)知識與技能:通...
最新更新