俗話說,不打無準(zhǔn)備之仗。在幼兒園教師的工作中,經(jīng)常會(huì)提前準(zhǔn)備一些需要的資料。資料一般指代可供人們參考的信息知識(shí)等。參考相關(guān)資料會(huì)讓我們的學(xué)習(xí)工作效率更高。所以,您有沒有了解過幼師資料的種類呢?下面是小編精心整理的"勾股定理的應(yīng)用課件匯集",歡迎閱讀,希望你能喜歡!
【學(xué)習(xí)目標(biāo)】
能運(yùn)用勾股定理及直角三角形的判別條件解決簡單的實(shí)際問題.
【學(xué)習(xí)重點(diǎn)】
勾股定理及直角三角形的判別條件的運(yùn)用.
【學(xué)習(xí)重點(diǎn)】
直角三角形模型的建立.
【學(xué)習(xí)過程】
一.課前復(fù)習(xí)
勾股定理及勾股定理逆定理的區(qū)別
二.新課學(xué)習(xí)
探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題
1.3如圖,有一個(gè)圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是多少?
思考:
1.利用學(xué)具,嘗試從A點(diǎn)到B點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個(gè)長方形,B點(diǎn)在什么位置?從
A點(diǎn)到B點(diǎn)的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個(gè)問題的?畫出圖形,寫出解答過程。
4.你是如何將這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?
探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
(1)你能替他想辦法完成任務(wù)嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,
BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個(gè)問題的?
(3)小明隨身只有一個(gè)長度為20cm的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會(huì)了什么方法?
探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問題中的應(yīng)用
例圖1-14是一個(gè)滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?
2.你是如何解決這個(gè)問題的?寫出解答過程。
小結(jié):
方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ).
四.課堂小結(jié):本節(jié)課你學(xué)到了什么?
三.新知應(yīng)用
1.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L度是()
1.3
五.作業(yè)布置:習(xí)題1.41,3,4題
【反思】
一、教師我的體會(huì):
①、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。
把教材讀薄,
②、除了備教材外,還備學(xué)生。從教案及授課過程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語言轉(zhuǎn)換成通俗文字來表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂于面對(duì)奧妙而又有一定深度的數(shù)學(xué),樂于學(xué)習(xí)數(shù)學(xué)。
③、新課選用的例子、練習(xí),都是經(jīng)過精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。
④、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學(xué)生體會(huì):
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來說非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過程中共同提高我覺得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的'思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時(shí)間去思考怎么畫,那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。
一、教學(xué)目標(biāo):
掌握勾股定理,能用勾股定理解決某些簡單的實(shí)際問題。
二、教學(xué)重點(diǎn):掌握勾股定理,能用勾股定理解決某些簡單的實(shí)際問題。
教學(xué)難點(diǎn):熟練勾股定理,并利用它們的特征解決問題。
三、教學(xué)過程
(一)合作交流: 1、如圖①在RT△ABC中,∠C=90o,由勾股定理,
得c2=_____________, c=__________
2、在Rt△ABC中,∠C=90o
① 若a=1,b=2,則c2=_________=_________=_____∴c=_________
② 若a=1,c=2,則b2=___________=________=______∴b=_________
③ 若c=10,b=6, 則a2=___________=________=______∴a=_________
(二)綜合應(yīng)用:
例1:(1)在長方形ABCD中AB、BC、AC大小關(guān)系?
(2)一個(gè)門框的尺寸如圖1所示。
①若有一塊長3米,寬0.8米的薄木板,問怎樣從門框通過?
②若薄木板長3米,寬2.2米呢?為什么?
解:(1)___________________
( 2)答: ①:__________
②:_________
在Rt△ABC中, 由勾股定理,得AC2=AB2+BC2=________=___
因?yàn)锳C______木板的寬,所以木板_________從門框內(nèi)通過。
(三)鞏固提高
1、已知要從電桿離地面5米處向地面拉一條長7米的電纜,
求地面電纜固定點(diǎn)A到電線桿底部B的距離。
解:由題意得,在Rt△ABC中: =5米, =7米
根據(jù)勾股定理,得AB2=
∴AB=
2、如圖,一個(gè)圓錐的高AO=2.4cm,底面半徑OB=0.7cm,
求AB的長。
解:
3、如圖,為了求出位于湖兩岸的兩點(diǎn)A、 B之間的距離,一個(gè)觀測(cè)者在點(diǎn)C設(shè)樁,使三角形ABC恰好為直角三角形.通過測(cè)量,得到AC長160米,BC長128米.問從點(diǎn)A穿過湖到點(diǎn)B有多遠(yuǎn)?
解:由題意得:在 中,
根據(jù)勾股定理得:
∴AB=
∴從點(diǎn)A穿過湖到點(diǎn)B有
4、求下列陰影部分的面積:
(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.
正方形的邊長=
正方形的面積=________ ______
(2)
長方形的長=
長方形的面積為________________
(3)
圓的半徑=
半圓的面積為__________________
5、一旗桿離地面6米處折斷,旗桿頂部落在離旗桿8米處,旗桿折斷之前有多少米?
(提示:折斷前的長度應(yīng)該是AB+BC的長)
解:
6、如圖所示,求矩形零件上兩孔中心A和B的距離。
(精確到0.1mm)(分析:求兩孔中心A和B的距離即
求線段____的長度)
解: 如圖:AC=
BC=
∵Rt△ABC中,∠C=90o,
由勾股定理,得
∴AB2=_________=
∴AB=
答:
7、在△ABC中,∠C=900,AB=10。
(1)若∠B=300,求BC、AC。
(2)若∠A=450,求BC、AC。
8、如圖,一個(gè)3米長的梯子AB,斜著靠在豎直的墻AO上,這時(shí)AO的距離為2.5米。
①求梯子的底端B距墻角O多少米?
②如果梯子的頂端A沿墻角下滑0.5米至C,請(qǐng)同學(xué)們:
猜一猜,底端也將滑動(dòng)0.5米嗎?
算一算,底端滑動(dòng)的距離近似值是多少? (結(jié)果保留兩位小數(shù))
9、一艘輪船以16海里/時(shí)的速度離開港口A向東南方向航行。另一艘輪船在同時(shí)同地以12海里/時(shí)的速度向西南方向航行,它們離開港口一個(gè)半小時(shí)后相距多遠(yuǎn)?(自已畫圖,標(biāo)字母,求解)。
(四)課堂小結(jié)
這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?有什么收獲?你還有什么疑問嗎?
(五)作業(yè)
(六)課堂反思
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,往往需要進(jìn)行教學(xué)設(shè)計(jì)編寫工作,教學(xué)設(shè)計(jì)是對(duì)學(xué)業(yè)業(yè)績問題的解決措施進(jìn)行策劃的過程。那么問題來了,教學(xué)設(shè)計(jì)應(yīng)該怎么寫?下面是小編為大家收集的八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)反思,僅供參考,歡迎大家閱讀。
教學(xué)目標(biāo)具體要求:
1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問題。
2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
重點(diǎn):
勾股定理的應(yīng)用
難點(diǎn):
勾股定理的應(yīng)用
教案設(shè)計(jì)
一、知識(shí)點(diǎn)講解
知識(shí)點(diǎn)1:(已知兩邊求第三邊)
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?
知識(shí)點(diǎn)2:
利用方程求線段長
1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,
(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
(2)DE與CE的位置關(guān)系
(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
利用方程解決翻折問題
2、如圖,用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長。
4.如圖,將一個(gè)邊長分別為4、8的矩形形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,則EF的長是多少?
5、折疊矩形ABCD的一邊AD,折痕為AE,且使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,以B點(diǎn)為原點(diǎn),BC為x軸,BA為y軸建立平面直角坐標(biāo)系。求點(diǎn)F和點(diǎn)E坐標(biāo)。
6、邊長為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線AC折疊后,點(diǎn)B落在第四象限B1處,設(shè)B1C交x軸于點(diǎn)D,求(1)三角形ADC的面積,(2)點(diǎn)B1的坐標(biāo),(3)AB1所在的直線解析式.
知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系
1.(1).若一個(gè)三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。
(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。
(3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。
2.如圖,正方形ABCD中,邊長為4,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),CE=BC,你能說明∠AFE是直角嗎?
變式:如圖,正方形ABCD中,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且CE=BC,你能說明∠AFE是直角嗎?
3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問這位同學(xué)又走了50米后向哪個(gè)方向走了
二、課堂小結(jié)
談一談你這節(jié)課都有哪些收獲?
應(yīng)用勾股定理解決實(shí)際問題
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。
針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):
一、復(fù)習(xí)引入
對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡短明了,花費(fèi)時(shí)間短。
二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法
活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。
活動(dòng)二:解決例二梯子滑落的`問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。
活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
二、鞏固練習(xí),熟練新知
通過測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的經(jīng)驗(yàn)和感受。
在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問題:
1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。
【--小班數(shù)學(xué)教案】
《八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思》這是一篇八年級(jí)上冊(cè)數(shù)學(xué)教案,本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。
八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版14.2勾股定理的應(yīng)用(2)教學(xué)目標(biāo):1.會(huì)用勾股定理解決較綜合的問題.2.樹立數(shù)形結(jié)合的思想.教學(xué)重點(diǎn)勾股定理的綜合應(yīng)用.教學(xué)難點(diǎn)勾股定理的綜合應(yīng)用.教學(xué)過程一、課前預(yù)習(xí)1.等腰三角形底邊上的高為8,周長為32,則該等腰三角形面積為_______.解:設(shè)底邊長為2x,則腰長為16-x,有(16-x)2=82+x2,x=6,∴S=×2x×8=48.2.如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是1,每個(gè)小格的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形:(1)使三角形的三邊長分別為3. 、 (在圖甲中畫一個(gè)即可);(2)使三角形為鈍角三角形且面積為4(在圖乙中畫一個(gè)即可).二、合作探究問題探究1:邊長為無理數(shù)例1:如圖,在3×3的正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1,請(qǐng)?jiān)诮o定網(wǎng)格中按下列要求畫出圖形:(1)畫出所有從點(diǎn)A出發(fā),另一端點(diǎn)在格點(diǎn)(即小正方形的頂點(diǎn))上,且長度為 的線段;(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.教師分析只需利用勾股定理看哪一個(gè)矩形的對(duì)角線滿足要求.解:(1)如下圖中,AB.AC.AE.AD的長度均為 .(2)如下圖中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要畫的等腰三角形.問題探究2:不規(guī)則圖形面積的求法例2:如圖,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求圖中陰影部分的面積.解:在Rt△ADC中,AC =AD +CD =6 +8=100(勾股定理),∴AC=10m.∵AC +BC =10 +24 =676=AB ,∴△ACB為直角三角形(如果三角形的三邊長A.B.c有關(guān)系:a +b =c ,那么這個(gè)三角形是直角三角形),∴S陰影部分=S△ACB-S△ACD= ×10×24- ×6×8=96(m ).三、課堂鞏固(1)四年一度的國際數(shù)學(xué)家大會(huì)于2002年8月20日在北京召開.大會(huì)會(huì)標(biāo)如圖甲,它是由四個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形.若大正方形的面積為13,每個(gè)直角三角形兩直角邊的和是5,求中間小正方形的面積;(2)現(xiàn)有一張長為6.5cm,寬為2cm的紙片,如圖乙,請(qǐng)你將它分割成6塊,再拼合成一個(gè)正方形.解:(1)設(shè)較長直角邊為b,較短直角邊為a,則小正方形的邊長為:a-b.而斜邊即為大正方形邊長,且其平方為13,即a2+b2=13①,由a+b=5,兩邊平方,得a2+b2+2ab=25.將①代入,得2ab=12.所以(b-a)2=b2+a2-2ab=13-12=1.即小正方形面積為1;(2)由(2)題中矩形面積為6.5×2=13與(1)題正方形面積相等,仿照甲圖可得,算出其中a=2,b=3,如圖.四、課堂小結(jié)1.我們學(xué)習(xí)了什么?2.還有什么疑惑嗎?五、課后作業(yè)習(xí)題14.2勾股定理的應(yīng)用(1)教學(xué)目標(biāo)1.知識(shí)目標(biāo)(1)了解勾股定理的作用是“在直角三角形中已知兩邊求第三邊”;而勾股逆定理的作用是由“三角形邊的關(guān)系得出三角形是直角三角形”.(2)掌握勾股定理及其逆定理,運(yùn)用勾股定理進(jìn)行簡單的長度計(jì)算.2.過程性目標(biāo)(1)讓學(xué)生親自經(jīng)歷卷折圓柱.(2) 讓學(xué)生在親自經(jīng)歷卷折圓柱中認(rèn)識(shí)到圓柱的側(cè)面展開圖是一個(gè)長方形(矩形).(3)讓學(xué)生通過觀察、實(shí)驗(yàn)、歸納等手段,培養(yǎng)其將“實(shí)際問題轉(zhuǎn)化為應(yīng)用勾股定理解直角三角形的數(shù)學(xué)問題”的能力.教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):勾股定理的應(yīng)用.教學(xué)難點(diǎn):將實(shí)際問題轉(zhuǎn)化為“應(yīng)用勾股定理及其逆定理解直角三角形的數(shù)學(xué)問題”.原因分析:1.例1中學(xué)生因?yàn)槠淇臻g想象能力有限,很難想到螞蟻爬行的路徑是什么,為此通過制作圓柱模型解決難題.2.例2中學(xué)生難找到要計(jì)算的具體線段.通過多媒體演示來啟發(fā)學(xué)生的思維.教學(xué)突破點(diǎn):突出重點(diǎn)的教學(xué)策略:通過回憶復(fù)習(xí)、例題、小結(jié)等,突出重點(diǎn)“勾股定理及其逆定理的應(yīng)用”,教學(xué)過程教學(xué)過程 設(shè)計(jì)意圖復(fù)習(xí)部分 復(fù)習(xí)練習(xí),引出課題例1:在Rt△ABC中,兩條直角邊分別為3,4,求斜邊c的值?【答案】c=5.例2:在Rt△ABC中,一直角邊分別為5,斜邊為13,求另一直角邊的長是多少?【答案】另一直角邊的長是 12. 通過簡單計(jì)算題的練習(xí),幫助學(xué)生回顧勾股定理,加深定理的記憶理解,為新課作好準(zhǔn)備小結(jié):在上面兩個(gè)小題中,我們應(yīng)用了勾股定理:在Rt△ABC中,若∠C=90°,則c2= a2+b2 . 加深定理的記憶理解,突出定理的作用.新課講解勾股定理能解決直角三角形的許多問題,因此在現(xiàn)實(shí)生活和數(shù)學(xué)中有著廣泛的應(yīng)用.例3:如圖,一圓柱體的底面周長為20cm,高AB為4cm,BC是上底面的直徑.一只螞蟻從點(diǎn)A出發(fā),沿著圓柱的側(cè)面爬行到點(diǎn)C,試求出爬行的最短路程.【解析】螞蟻實(shí)際上是在圓柱的半個(gè)側(cè)面內(nèi)爬行.大家用一張白紙卷折圓柱成圓柱形狀,標(biāo)出A.B.C.D各點(diǎn),然后打開,螞蟻在圓柱上爬行的距離,與在平面紙上的距離一樣.AC之間的最短距離是什么?根據(jù)是什么?(學(xué)生回答)根據(jù)“兩點(diǎn)之間,線段最短”,所求的最短路程就是側(cè)面展開圖矩形ABCD對(duì)角線AC之長.我們可以利用勾股定理計(jì)算出AC的長.解:如圖,在Rt△ABC中,BC=底面周長的一半=10cm,∴AC= =?= ≈10.77(cm)(勾股定理).答:最短路程約為10.77cm.例4:一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖的某工廠,問這輛卡車能否通過該工廠的廠門?【解析】由于廠門寬度足夠,所以卡車能否通過,只要看當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH.如圖所示,點(diǎn)D在離廠門中線0.8米處,且CD⊥AB,與地面交于H.解:在Rt△OCD中,由勾股定理得CD= = =0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡車能通過廠門.?通過動(dòng)手作模型,培養(yǎng)學(xué)生的動(dòng)手、動(dòng)腦能力,解決“學(xué)生空間想像能力有限,想不到螞蟻爬行的路徑”的難題,從而突破難點(diǎn).由學(xué)生回答“AC之間的最短距離及根據(jù)”,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知識(shí)相關(guān)的舊知識(shí),從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知識(shí)的學(xué)習(xí)具有某種“召喚力”再次提問,突出勾股定理的作用,加深記憶.利用多媒體設(shè)備演示卡車通過廠門正中間時(shí)的過程(在幾何畫板上畫出廠門的形狀,用移動(dòng)的矩形表示卡車,矩形的高低可調(diào)),讓學(xué)生通過觀察,找到需要計(jì)算的線段CH、CD及CD所在的直角三角形OCD,將實(shí)際問題轉(zhuǎn)化為應(yīng)用勾股定理解直角三角形的數(shù)學(xué)問題.小結(jié) 本節(jié)課我們學(xué)習(xí)了應(yīng)用勾股定理來解決實(shí)際問題.在實(shí)際當(dāng)中,長度計(jì)算是一個(gè)基本問題,而長度計(jì)算中應(yīng)用最多、最基本的就是解直角三角形,利用勾股定理已知兩邊求第三邊,我們要掌握好這一有力工具.課堂練習(xí) 練習(xí)1. 如圖,從電桿離地面5米處向地面拉一條7米長的鋼纜,求地面鋼纜固定點(diǎn)A到電桿底部B的距離.【答案】?2. 現(xiàn)準(zhǔn)備將一塊形為直角三角形的綠地?cái)U(kuò)大,使其仍為直角三角形,兩直角邊同時(shí)擴(kuò)大到原來的兩倍,問斜邊擴(kuò)大到原來的多少倍?【答案】2(四)作業(yè):習(xí)題(五)策略分析為防止以上錯(cuò)誤的出現(xiàn),除了講清楚定理,還應(yīng)該強(qiáng)調(diào):1.定理中基本公式中的項(xiàng)都是平方項(xiàng);2.計(jì)算直角邊時(shí)需要將基本公式移項(xiàng)變形,按平方差計(jì)算.3.最后求邊長時(shí),需要進(jìn)行開平方運(yùn)算.【反思】本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):一、復(fù)習(xí)引入對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡短明了,花費(fèi)時(shí)間短。二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。活動(dòng)二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。二、鞏固練習(xí),熟練新知通過測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的經(jīng)驗(yàn)和感受。在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問題:1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。
【--小班數(shù)學(xué)教案】
《八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)反思》這是一篇八年級(jí)上冊(cè)數(shù)學(xué)教案,本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。
八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)教學(xué)目標(biāo)具體要求:1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問題。2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。3.情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。重點(diǎn):勾股定理的應(yīng)用難點(diǎn):勾股定理的應(yīng)用教案設(shè)計(jì)一、知識(shí)點(diǎn)講解知識(shí)點(diǎn)1:(已知兩邊求第三邊)1.在直角三角形中,若兩直角邊的長分別為1cm,2cm?,則斜邊長為_____________。2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?知識(shí)點(diǎn)2:利用方程求線段長1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,?DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上?建一車站E,(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?(2)DE與CE的位置關(guān)系(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?利用方程解決翻折問題2、如圖,用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長。4.如圖,將一個(gè)邊長分別為4、8的矩形形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,則EF的長是多少?5、折疊矩形ABCD的一邊AD,?折痕為AE,?且使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,以B點(diǎn)為原點(diǎn),BC為x軸,BA為y軸建立平面直角坐標(biāo)系。?求點(diǎn)F和點(diǎn)E坐標(biāo)。6、邊長為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線AC折疊后,點(diǎn)B落在第四象限B1處,設(shè)B1C交x軸于點(diǎn)D,求(1)三角形ADC的面積,(2)點(diǎn)B1的坐標(biāo),(3)AB1所在的直線解析式.知識(shí)點(diǎn)3:?判斷一個(gè)三角形是否為直角三角形?間接給出三邊的長度或比例關(guān)系1.(1).若一個(gè)三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是??____________。(3)在ABC中,a:b:c=1:1: ?,那么ABC的確切形狀是_____________。2.?如圖,正方形ABCD中,邊長為4,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),CE=BC,你能說明∠AFE是直角嗎?變式:如圖,正方形ABCD中,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且CE=BC ,你能說明∠AFE是直角嗎?3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問這位同學(xué)又走了50米后向哪個(gè)方向走了?二、課堂小結(jié)談一談你這節(jié)課都有哪些收獲?應(yīng)用勾股定理解決實(shí)際問題三、課堂練習(xí)以上習(xí)題。四、課后作業(yè)卷子。?本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):一、復(fù)習(xí)引入對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡短明了,花費(fèi)時(shí)間短。二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)?;顒?dòng)二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的'探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。二、鞏固練習(xí),熟練新知通過測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的經(jīng)驗(yàn)和感受。在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問題:1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。
喜歡《勾股定理的應(yīng)用課件匯集》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了勾股定理應(yīng)用課件專題,希望您能喜歡!
相關(guān)推薦
所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫教案和課件時(shí),老師們尤其需要注意確保教學(xué)重點(diǎn)不會(huì)被忽略。是否也曾有過編寫教案和課件時(shí)的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠?yàn)槟峁└嗟膸椭?..
身為的一名優(yōu)秀的幼兒園老師,寫好說課稿是我們必須要做的,為了讓學(xué)生在樂趣中學(xué)習(xí)成長,老師們?cè)谏险n前會(huì)準(zhǔn)備好說課稿,有了說課稿才能有計(jì)劃、有步驟、有質(zhì)量的完成教學(xué)任務(wù)。作為新手老師,我們?cè)撛趺磳懹變簣@說課稿嗎?小編花時(shí)間專門編輯了勾股定理逆定理說課稿集錦10篇,但愿對(duì)你的學(xué)習(xí)工作帶來幫助。尊敬的各位評(píng)...
老師是人類社會(huì)不可缺少的一個(gè)重要崗位,由于教師本人的知識(shí)水平,經(jīng)驗(yàn)特長的差別,所以在教案上會(huì)存在著一定的差異性,怎樣才能更好發(fā)揮的指導(dǎo)作用呢?下面是由幼兒教師教育網(wǎng)為大家?guī)淼墓垂啥ɡ淼哪娑ɡ碚f課稿,僅供你在工作和學(xué)習(xí)中參考!...
最新更新