教案課件是老師不可缺少的課件,我們需要靜下心來寫教案課件。制定好教案需要教師有穩(wěn)定的教學(xué)基礎(chǔ)。以下是我們?yōu)槟淼囊幌盗信c“等差數(shù)列課件”有關(guān)的內(nèi)容,請您認(rèn)真閱讀本文并考慮收藏保存!
3、通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點是通項公式的認(rèn)識;
教學(xué)難點是對公式的靈活運用.。
實物投影儀,多媒體軟件,電腦。
研探式。
一。復(fù)習(xí)提問。
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用。
二。主體設(shè)計。
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求)。找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求?!边@是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上。
1、方程思想的運用。
(1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第項。
(2)已知等差數(shù)列中,首項,則公差。
(3)已知等差數(shù)列中,公差,則首項。
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量。
2、基本量方法的使用。
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題。解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量。
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定)。
(3)已知等差數(shù)列中,求;;;;…。
類似的還有。
以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判斷?引出。
4、研究項的符號。
這是為研究等差數(shù)列前項和的最值所做的準(zhǔn)備工作??膳鋫涞念}目如。
(1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第項起以后每項均為負(fù)數(shù)。
三。小結(jié)。
1、用方程思想認(rèn)識等差數(shù)列通項公式;
2、用函數(shù)思想解決等差數(shù)列問題。
一、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
二、學(xué)生學(xué)習(xí)情況分析
教學(xué)內(nèi)容針對的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時要從具體的生活實例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。
三、設(shè)計思想
1.教法
⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性。
⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性。
⑶講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點。2.學(xué)法
引導(dǎo)學(xué)生首先從四個現(xiàn)實問題(數(shù)數(shù)問題、女子舉重獎項設(shè)置問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法。
用多種方法對等差數(shù)列的通項公式進(jìn)行推導(dǎo)。
在引導(dǎo)分析時,留出“空白”,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)目標(biāo)
通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力。
五、教學(xué)重點與難點
重點:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。難點:
①理解等差數(shù)列“等差”的特點及通項公式的含義。②理解等差數(shù)列是一種函數(shù)模型。關(guān)鍵:
等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。
六、教學(xué)過程(略)
數(shù)學(xué)是思維的體操,是培養(yǎng)學(xué)生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導(dǎo):強(qiáng)調(diào)過程,強(qiáng)調(diào)學(xué)生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過程的體驗?;谝陨险J(rèn)識,在設(shè)計本節(jié)課時,教師所考慮的不是簡單告訴學(xué)生等差數(shù)列的定義和通項公式,而是創(chuàng)造一些數(shù)學(xué)情境,讓學(xué)生自己去發(fā)現(xiàn)、證明。在這個過程中,學(xué)生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學(xué)生的學(xué)習(xí)興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導(dǎo)的數(shù)學(xué)理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識,發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會學(xué)習(xí)、學(xué)會合作、學(xué)會創(chuàng)新。
高中數(shù)學(xué)必修五第二章第二節(jié),等差數(shù)列,兩課時內(nèi)容,本節(jié)是第一課時。研究等差數(shù)列的定義、通項公式的推導(dǎo),借助生活中豐富的典型實例,讓學(xué)生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。通過本節(jié)課的學(xué)習(xí)要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。
本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點內(nèi)容。在高考中也是重點考察內(nèi)容之一,并且在實際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對后續(xù)內(nèi)容的學(xué)習(xí),無論在知識上,還是在方法上都具有積極的意義。
學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認(rèn)識,對數(shù)學(xué)公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關(guān)系。同時思維的嚴(yán)密性還有待加強(qiáng)。
1.知識目標(biāo):理解等差數(shù)列概念,掌握等差數(shù)列的通項公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。
2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,應(yīng)用數(shù)學(xué)公式的能力及滲透函數(shù)、方程的思想。
3.情感目標(biāo):體驗從特殊到一般,又到特殊的認(rèn)知規(guī)律,提高數(shù)學(xué)猜想、歸納的能力。
教學(xué)難點:對等差數(shù)列概念的理解及學(xué)會通項公式的推導(dǎo)及應(yīng)用。
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動共同發(fā)展的過程,結(jié)合學(xué)生的實際情況,及本節(jié)內(nèi)容的特點,我采用的是“問題教學(xué)法”,其主導(dǎo)思想是以探究式教學(xué)思想為主導(dǎo),由教師提出一系列精心設(shè)計的問題,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識又發(fā)展智能的目的。
教學(xué)手段:多媒體計算機(jī)和傳統(tǒng)黑板相結(jié)合。通過計算機(jī)模擬演示,使學(xué)生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學(xué)生更好的經(jīng)歷整個教學(xué)過程。
設(shè)計意圖:希望學(xué)生能通過日常生活中的實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過程。
師—把上面的數(shù)列各項依次記為 ,填空:
師—上面這個規(guī)律還有其他形式嗎?
師—你能用普通語言概括上面的規(guī)律嗎?
學(xué)生—自由發(fā)言,選擇最恰當(dāng)?shù)恼Z言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
(1)20北京奧運會,女子舉重共設(shè)置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):
(2)水庫的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)
(3)我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:
時間 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)
學(xué)生—(1) , ,
(2) , ,
(3) , ,
師 —滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?
師—給出文字?jǐn)⑹龅亩x(學(xué)生敘述,板書定義):
一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項。
對定義進(jìn)行分析,強(qiáng)調(diào): = 1 GB3 ① 同一個常數(shù); = 2 GB3 ② 從第二項起。
師—這樣的數(shù)列在生活中的例子,誰能再舉幾個?
52,50,48,46,44,42,40,38.
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
設(shè)計意圖:概括等差中項的概念。總結(jié)等差中項公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。
師生活動:
師—想一想,一個等差數(shù)列最少有幾項?它們之間有什么關(guān)系?
學(xué)生思考后回答,至少三項,然后老師引導(dǎo)學(xué)生概括等差中項的概念。
設(shè)三個數(shù) 成等差數(shù)列,則A叫a與b的等差中項。同時有A-a=b-A,
(2)等差數(shù)列中的任意連續(xù)三項都構(gòu)成等差數(shù)列 ,反之亦成立。
設(shè)計意圖:通過具體數(shù)列的通項公式,總結(jié)一般等差數(shù)列的通項公式,體會特殊到一般的數(shù)學(xué)思想方法。
師生活動:
師—對于一個數(shù)列,我們最關(guān)心的是每一項,而這就要求我們能知道它的通項公式。下面一起來研究等差數(shù)列的通項公式。
先寫出上面引例中等差數(shù)列的通項公式。再推導(dǎo)一般等差數(shù)列的通項公式。
師—若一個數(shù)列 是等差數(shù)列,它的公差是d,那么數(shù)列 的通項公式是什么?
啟發(fā)學(xué)生:(歸納、猜想)可用首項與公差表示數(shù)列中任意一項。
學(xué)生—第二項,所以n≥2。
師—n=1時呢?
師—很好!
教學(xué)目標(biāo):1、使學(xué)生進(jìn)一步地明確等差(比)數(shù)列、等差(比)中頃的概念;
2、使學(xué)生進(jìn)一步地熟練地掌握等差(比)數(shù)列的通項公式及推導(dǎo)公式;
3、使學(xué)生較靈活地應(yīng)用等差(比)數(shù)列的定義及性質(zhì)解決一些相關(guān)問題。
教學(xué)重點:等差(比)數(shù)列的定義、通項公式、性質(zhì)的理解與應(yīng)用。
教學(xué)難點:靈活應(yīng)用等差(比)數(shù)列的定義及性質(zhì)解決一些相關(guān)的問題。
教學(xué)準(zhǔn)備:利用自習(xí)將思考題(一)(二)發(fā)放給學(xué)生,讓他們先思考,教師解答學(xué)生在思考過程中出現(xiàn)的問題。
課 型:專題復(fù)習(xí)課。
時間安排:45’×2
教學(xué)過程:
第一課時
一、回顧等差數(shù)列的有關(guān)基礎(chǔ)知識
教 法:1、指名學(xué)生回答等差數(shù)列的概念,等差中頃,通項公式,前幾項求和公式。
2、教師點評,師生達(dá)成共識。
二、領(lǐng)悟“思考題(一)”
教 法:1、以拖火車的形式指名學(xué)生回答思考題(一)的4個問題。
2、教師點評,師生達(dá)成共識。
⑴由思考1還可以得到這樣的結(jié)論,在等差數(shù)列{an}中,
m+n
若 =k,則am+an=2ak(m,n,k∈N_)與性質(zhì):
在等差數(shù)列{an}中m+n=p+q→am+an=ap+aq(m,n,p,q∈N_)是一致的)。
⑵由思考題2還可以得到這樣的變式:①an=am+(n—m)d或am=an+(m—n)d
an—a1
②d=
n—1
⑶由思考題3、4可以得到這樣的性質(zhì):若數(shù)列{an}為等差數(shù)列,其前幾項和為Sn,則有如下性質(zhì):Sn,S2n—Sn,S3n—S2n……也成等差數(shù)列,公差為nd2。
三、學(xué)生操練
教 法:1、指名學(xué)生板演,其余學(xué)生思考,教師巡回指導(dǎo),著重關(guān)注學(xué)困生。
2、教師點評,師生達(dá)成共識:巧妙地應(yīng)用等差數(shù)列的性質(zhì)(或通項公式的變形式)求解,能簡化解題過程。
四、布置作業(yè):1、第6、7題。 2、思考題(二)
第二課時
一、回顧等比數(shù)列的.有關(guān)基礎(chǔ)知識
教 法:1、指名學(xué)生回答“等比數(shù)列的概念,等比中項,通項公式,前n項求和公式”。
2、教師點評,師生達(dá)成共識。
請同學(xué)們來思考這樣一個問題. 如果在a與b中間插入一個數(shù)A,使a、A、b成等差數(shù)列,那么A應(yīng)滿足什么條件? 由等差數(shù)列定義及a、A、b成等差數(shù)列可得:A-a=b-A,即:a=. 反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數(shù)列. 總之,A= a,A,b成等差數(shù)列. 如果a、A、b成等差數(shù)列,那么a叫做a與b的等差中項. ?? 例題講解 [例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25. 思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25. 思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關(guān)系式an=am+(n-m)d.這樣可簡化運算. 思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關(guān)系式,便可直接求出a25的值. ? [例2](1)求等差數(shù)列8,5,2…的第20項. 分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項. 答案:這個數(shù)列的第20項為-49. (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項? 分析:要想判斷-401是否為這數(shù)列的一項,關(guān)鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401. ∴-401是這個數(shù)列的第100項. ? Ⅲ.課堂練習(xí)1.(1)求等差數(shù)列3,7,11,……的'第4項與第10項. ? (2)求等差數(shù)列10,8,6,……的第20項. ? (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數(shù)列{an}中,(1)已知a4=10,a7=19,求a1與d; (2)已知a3=9,a9=3,求a12. Ⅳ.課時小結(jié) 通過本節(jié)學(xué)習(xí),首先要理解與掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式:an-an-1=d(n≥2).其次,要會推導(dǎo)等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應(yīng)用.最后,還要注意一重要關(guān)系式:an=am+(n-m)d的理解與應(yīng)用以及等差中項。 Ⅴ.課后作業(yè) 課本P39習(xí)題? 1,2,3,4
【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項公式的推導(dǎo)過程及蘊含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
【教學(xué)重點】。
等差數(shù)列的概念、等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
【教學(xué)難點】。
環(huán)節(jié)一:導(dǎo)入新課。
教師ppt展示幾道題目:
1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個數(shù),可以得到數(shù)列:0,5,15,20,252.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運會上,女子舉重正式列為比賽項目,該項目共設(shè)置了7個級別,其中交情的4個級別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點?學(xué)生回答從第二項開始,每一項與前一項的差都等于一個常數(shù),教師引出等差數(shù)列。
環(huán)節(jié)二:探索新知。
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念。
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)。
(1)1,2,4,6,8,10,12,……。
(2)0,1,2,3,4,5,6,……。
(3)3,3,3,3,3,3,3,……。
(4)-8,-6,-4,-2,0,2,4,……。
(5)3,0,-3,-6,-9,……。
環(huán)節(jié)四:小結(jié)作業(yè)。
關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
A、知識目標(biāo):
掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。
B、能力目標(biāo):
(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
(3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。
(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
(2)通過公式的運用,樹立學(xué)生“大眾教學(xué)”的思想意識。
(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。
教學(xué)目標(biāo)
1。通過教與學(xué)的互動,使學(xué)生加深對等差數(shù)列通項公式的認(rèn)識,能參與編擬一些簡單的問題,并解決這些問題;
2。利用通項公式求等差數(shù)列的項、項數(shù)、公差、首項,使學(xué)生進(jìn)一步體會方程思想;
3。通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點,難點
教學(xué)重點是通項公式的認(rèn)識;教學(xué)難點是對公式的靈活運用.
教學(xué)用具
實物投影儀,多媒體軟件,電腦。
教學(xué)方法
研探式。
教學(xué)過程
一。復(fù)習(xí)提問
前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些?
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用。
二。主體設(shè)計
通項公式 反映了項 與項數(shù) 之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知 求 )。找學(xué)生試舉一例如:“已知等差數(shù)列 中,首項 ,公差 ,求 ?!边@是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上。
1。方程思想的運用
(1)已知等差數(shù)列 中,首項 ,公差 ,則-397是該數(shù)列的第______項。
(2)已知等差數(shù)列 中,首項 , 則公差
(3)已知等差數(shù)列 中,公差 , 則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量。
2?;玖糠椒ǖ氖褂?/p>
(1)已知等差數(shù)列 中, ,求 的值。
(2)已知等差數(shù)列 中, , 求 。
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于 和 的二元方程組,所以這些等差數(shù)列是確定的,由 和 寫出通項公式,便可歸結(jié)為前一類問題。解決這類問題只需把兩個條件(等式)化為關(guān)于 和 的`二元方程組,以求得 和 , 和 稱作基本量。
教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于 和 的二元方程,這是一個 和 的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定)。
如:已知等差數(shù)列 中, …
由條件可得 即 ,可知 ,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題
(3)已知等差數(shù)列 中, 求 ; ; ; ;…。
類似的還有
(4)已知等差數(shù)列 中, 求 的值。
以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判斷?引出
3。研究等差數(shù)列的單調(diào)性
,考察 隨項數(shù) 的變化規(guī)律。著重考慮 的情況。 此時 是 的一次函數(shù),其單調(diào)性取決于 的符號,由學(xué)生敘述結(jié)果。這個結(jié)果與考察相鄰兩項的差所得結(jié)果是一致的。
4。研究項的符號
這是為研究等差數(shù)列前 項和的最值所做的準(zhǔn)備工作??膳鋫涞念}目如
(1)已知數(shù)列 的通項公式為 ,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列 從第________項起以后每項均為負(fù)數(shù)。
三。小結(jié)
1。 用方程思想認(rèn)識等差數(shù)列通項公式;
2。 用函數(shù)思想解決等差數(shù)列問題。
四。板書設(shè)計
等差數(shù)列通項公式
1。 方程思想的運用
2。 基本量方法的使用
3。 研究等差數(shù)列的單調(diào)性
4。 研究項的符號
各位領(lǐng)導(dǎo)、各位專家:
你們好!我說課的課題是《等差數(shù)列》。我將從以下五個方面來分析本課題:
一、教材分析
1、教材的地位和作用:
《等差數(shù)列》是北師大版新課標(biāo)教材《數(shù)學(xué)》必修5第一章第二節(jié)的內(nèi)容,是學(xué)生在學(xué)習(xí)了數(shù)列的有關(guān)概念和學(xué)習(xí)了給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列知識的進(jìn)一步深入和拓展。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。另一方面,等差數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分,有著廣泛的實際應(yīng)用。
2、教學(xué)目標(biāo):
a、在知識上,要求學(xué)生理解并掌握等差數(shù)列的概念,了解等差數(shù)列通項公式的推導(dǎo)及思想,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛芎唵芜\用。
b、在能力上,注重培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會了函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移到研究數(shù)列上來,培養(yǎng)學(xué)生的知識、方法遷移能力,提高學(xué)生分析和解決問題的能力。
c、在情感上,通過對等差數(shù)列的研究,讓學(xué)生體驗從特殊到一般,又到特殊的認(rèn)識事物的規(guī)律,培養(yǎng)學(xué)生勇于創(chuàng)新的科學(xué)精神。
3、教學(xué)重、難點:
重點:
①等差數(shù)列的概念。
②等差數(shù)列通項公式的推導(dǎo)過程及應(yīng)用。
難點:
①等差數(shù)列的通項公式的推導(dǎo)。
②用數(shù)學(xué)思想解決實際問題。
二、學(xué)情分析
對于高二的學(xué)生,知識經(jīng)驗已經(jīng)比較豐富,他們的智力發(fā)展已經(jīng)到了形式運演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力。
三、教法、學(xué)法分析
教法:本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過提問題激發(fā)學(xué)生的求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析并解決問題。
學(xué)法:在引導(dǎo)學(xué)生分析問題時,留出學(xué)生思考的余地,讓學(xué)生去聯(lián)想、探索,鼓勵學(xué)生大膽質(zhì)疑,圍繞等差數(shù)列這個中心各抒己見,把需要解決的問題弄清楚。
四、教學(xué)過程
我把本節(jié)課的教學(xué)過程分為六個環(huán)節(jié):
(一)創(chuàng)設(shè)情境,提出問題
問題情境(通過多媒體給出現(xiàn)實生活中的四個特殊的數(shù)列)
1、我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,10,15,20,①
2、2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目共設(shè)置了7個級別,其中較輕的4個級別體重組成數(shù)列(單位:Kg):48,53,58,63②
3、水庫的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5,最低降至5那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15、5,13,10、5,8,5、5③
4、按照我國現(xiàn)行儲蓄制度(單利),某人按活期存入10000元錢,5年內(nèi)各年末的本利和(單位:元)組成了數(shù)列:10072,10144,10216,10288,10360④
教師活動:引導(dǎo)學(xué)生觀察以上數(shù)列,提出問題:
問題1、請說出這四個數(shù)列的后面一項是多少?
問題2、說出這四個數(shù)列有什么共同特點?
(二)新課探究
學(xué)生活動:對于問題1,學(xué)生容易給出答案。而問題2對學(xué)生來說較為抽象,不易回答準(zhǔn)確。
教師活動:為引導(dǎo)學(xué)生得出等差數(shù)列的概念,我對學(xué)生的表述進(jìn)行歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“從第2項起”、“每一項與前一項的差”、“同一個常數(shù)”告訴他們把滿足這些條件的數(shù)列叫做等差數(shù)列,之后由他們集體給出等差數(shù)列的概念以及其數(shù)學(xué)表達(dá)式。
同時為了配合概念的理解,用多媒體給出三個數(shù)列,由學(xué)生進(jìn)行判斷:
判斷下面的數(shù)列是否為等差數(shù)列,是等差數(shù)列的找出公差
1、1,2,3,4,5,6,;(√,d = 1)
2、0、9,0、7,0、5,0、3,0、1;(√,d = —0、2)
3、0,0,0,0,0,0,、;(√,d = 0)
其中第一個數(shù)列公差>0,第二個數(shù)列公差
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
在理解等差數(shù)列概念的基礎(chǔ)上提出:
問題3、如果等差數(shù)列的首項是a1,公差是d,如何用首項和公差將an表示出來?
教師活動:為引導(dǎo)學(xué)生得出通項公式,我采用討論式的教學(xué)方法。讓學(xué)生自由分組討論,在學(xué)生討論時引導(dǎo)他們得出a10=a1+9d,a40=a1+39d,進(jìn)而猜想an=a1+(n—1)d。
整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
此時指出:這就是不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,進(jìn)而提出:
問題4、怎么樣嚴(yán)謹(jǐn)?shù)那蟪龅炔顢?shù)列的通項公式?
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個等式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n—1個等式相加,最后證出通項公式。在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想”的教學(xué)要求。
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2,即an=2n—1、以此來鞏固等差數(shù)列通項公式運用,同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n的一次函數(shù),其圖像是均勻排開的無窮多個孤立點。這一題用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(三)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式的理解及運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a
1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1(1)求等差數(shù)列8,5,2,的第20項;第30項;第40項(2)—401是不是等差數(shù)列—5,—9,—13,的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強(qiáng)鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an
例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d、在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固。
例3是一個實際建模問題
某出租車的計價標(biāo)準(zhǔn)為1、2元/km,起步價為10元,即最初的4km(不含4千米)計費10元。如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意“出租車的計價標(biāo)準(zhǔn)為1、2元/km”使學(xué)生想到在每個整公里時出租車的車費構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型。
設(shè)置此題的目的:加強(qiáng)學(xué)生對“數(shù)學(xué)建?!彼枷氲恼J(rèn)識。
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題
目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。
2、小節(jié)后的練習(xí)中的第2題
目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。
3、課本P38例3(備用)
已知數(shù)列{an}的通項公式anpnq,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?它與函數(shù)y=px+q兩者圖象間有什么關(guān)系?
目的:此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義解決數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念;進(jìn)而讓學(xué)生從數(shù)(結(jié)構(gòu)特征)與形(圖象)上進(jìn)一步認(rèn)識到等差數(shù)列的通項公式與一次函數(shù)之間的關(guān)系
(五)歸納小結(jié)
(由學(xué)生總結(jié)這節(jié)課的收獲)
1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式
強(qiáng)調(diào)關(guān)鍵詞:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2、等差數(shù)列的通項公式an=a1+(n—1)d會知三求一
3、用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實際問題
(六)布置作業(yè)
必做題:課本P40習(xí)題2、2 A組第1、3、4題
選做題:課本P40習(xí)題2、2 B組第1題
課后實踐:
將學(xué)生分成三個小組,要求他們分別找出現(xiàn)實生活中公差大于、小于、等于0的典型的等差數(shù)列的模型,在下節(jié)課派代表為我們講解所選的等差數(shù)列。
目的是讓學(xué)生主動參與具體的教學(xué)實踐,進(jìn)一步鞏固知識,激發(fā)興趣。
五、結(jié)束
本節(jié)課我根據(jù)高二學(xué)生的心理特征及認(rèn)知規(guī)律,通過一系列問題貫穿教學(xué)始終,符合新課標(biāo)要求的“以教師為主導(dǎo),學(xué)生為主體”的思想,并最終達(dá)到預(yù)期的教學(xué)效果。
我的說課完畢,謝謝!
第三課時? 等差數(shù)列(一) 教學(xué)目標(biāo): 明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的'應(yīng)用意識. 教學(xué)重點: 1.等差數(shù)列的概念的理解與掌握. 2.等差數(shù)列的通項公式的推導(dǎo)及應(yīng)用. 教學(xué)難點: 等差數(shù)列“等差”特點的理解、把握和應(yīng)用. 教學(xué)過程: Ⅰ.復(fù)習(xí)回顧 上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法――通項公式和遞推公式.這兩個公式從不同的角度反映數(shù)列的特點,下面我們看這樣一些例子 Ⅱ.講授新課? 10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25? 2,2,2,2,2,…? 首先,請同學(xué)們仔細(xì)觀察這些數(shù)列有什么共同的特點?是否可以寫出這些數(shù)列的通項公式?(引導(dǎo)學(xué)生積極思考,努力尋求各數(shù)列通項公式,并找出其共同特點) 它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數(shù). 也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點.具有這種特點的數(shù)列,我們把它叫做等差數(shù)列. 1.定義 等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示. 2.等差數(shù)列的通項公式 等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得.若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得: (n-1)個等式 若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d? 即:an=a1+(n-1)d 當(dāng)n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N*時上述公式都成立,所以它可作為數(shù)列{an}的通項公式. 看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項. 由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d
幼師資料《等差數(shù)列課件10篇》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準(zhǔn)備了等差數(shù)列課件專題,希望您能喜歡!
相關(guān)推薦
每個老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時候了。教案對于保證教學(xué)效果起到至關(guān)重要的作用,那有哪些值得參考教案課件呢?搜尋良久后小編終于發(fā)現(xiàn)了這篇詳實的“等差數(shù)列教案”,相信一下這篇文章能夠為您排憂解難!...
古人云,工欲善其事,必先利其器。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,教案的作用就是為了緩解學(xué)生的壓力,提升效率,有了教案,在上課時遇到各種教學(xué)問題都能夠快速解決。您知道幼兒園教案應(yīng)該要怎么下筆嗎?于是,小編為你收集整理了等差數(shù)列教案十四篇。請閱讀后分享你的朋友!通過練習(xí)2和3 引出兩個...
每個老師都需要在課前準(zhǔn)備好自己的教案課件,本學(xué)期又到了寫教案課件的時候了。?教師應(yīng)該在教案課件中充分展示,讓學(xué)生理解和掌握知識。我在教育網(wǎng)上找到一篇關(guān)于“高等數(shù)學(xué)課件”的文章內(nèi)容很詳盡,希望這些知識能夠?qū)δ阌兴鶐椭?..
老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。教案課件寫好了,老師教學(xué)質(zhì)量肯定也差不了,對于寫教案課件有哪些疑問呢?出于您的需求,欄目小編為您搜集了以下內(nèi)容:數(shù)學(xué)等差數(shù)列教案,供大家借鑒和使用,希望大家分享!...
寫教案時教學(xué)要求一定要得當(dāng),教案與教師的教學(xué)工作息息相關(guān)。教案成為學(xué)生發(fā)展的主導(dǎo)者和促進(jìn)者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內(nèi)容。...
最新更新