“七年級上數(shù)學(xué)課件”的與眾不同之處將在這篇文章中得以呈現(xiàn),我相信這個建議會有所幫助。每個老師不可缺少的課件是教案課件,但老師也要清楚教案課件不是隨便寫寫就行的。?教案課件能夠反映出教師的創(chuàng)造性和智慧,使學(xué)生受益。
情景引入→探究新知→知識應(yīng)用→知識拓展→歸納小結(jié),布置作業(yè)→探尋點的坐標(biāo)變化與點平移規(guī)律
(一)情境引入
本環(huán)節(jié)主要是創(chuàng)設(shè)情境,在實際問題中引出本節(jié)課題.
【設(shè)計意圖】
引導(dǎo)學(xué)生發(fā)現(xiàn):可以借助游戲創(chuàng)設(shè)情境,導(dǎo)入新課.
(二)探究新知
1、利用丹鳳地圖的實際情境探索點的平移與坐標(biāo)變化的規(guī)律.
2、如圖,已知A(–2,–3),根據(jù)下列條件,在相應(yīng)的坐標(biāo)系中分別畫出平移后的點,寫出它們的坐標(biāo),并觀察平移前后點的'坐標(biāo)變化.
(1)將點A向右平移5個單位長度,得到點A1;
(2)將點A向左平移2個單位長度,得到點A2;
(3)將點A向上平移6個單位長度,得到點A3;
(4)將點A向下平移4個單位長度,得到點A4;
教學(xué)過程中注重讓學(xué)生明確:將哪個點沿著什么方向,平移幾個單位后,得到的是哪個點.
3、在此基礎(chǔ)上可以歸納出:點的左右平移點的橫坐標(biāo)變化,縱坐標(biāo)不變
點的上下平移點的橫坐標(biāo)不變,縱坐標(biāo)變化
4、點的平移的應(yīng)用.(見課件)
5、比一比看誰反應(yīng)快
(1)點A(–4,2)先向右平移3個單位長度后得到點B,求點B的坐標(biāo).
(2)點A(–4,2)先向左平移2個單位長度后得到點B,求點B的坐標(biāo).
(3)點A(–4,2)先向下平移4個單位長度后得到點B,求點B的坐標(biāo).
(4)點A(–4,2)先向上平移3個單位長度后得到點B,求點B的坐標(biāo).
6、逆向思維:由點的變化探索點的方向和距離
(1)如果A,B的坐標(biāo)分別為A(-4,5),B(-4,2),將點A向___平移___個單位長度得到點B;將點B向___平移___個單位長度得到點A。
(2)如果P、Q的坐標(biāo)分別為P(-3,-5),Q(2,-5),將點P向___平移___個單位長度得到點Q;將點Q向___平移___個單位長度得到點P。
(3)點A′(6,3)是由點A(-2,3)經(jīng)過__________________得到的.點B(4,3)向______________得到B′(4,5)
7、應(yīng)用平移解決簡單問題在平面直角坐標(biāo)系中,有一點(1,3),要使它平移到點(-2,-2),應(yīng)怎樣平移?說出平移的路線。
一、聯(lián)系實際生活應(yīng)用問題
應(yīng)用性問題對很多初中學(xué)生來說是一個數(shù)學(xué)學(xué)習(xí)難點。很多應(yīng)用性問題背景設(shè)置的情境都是學(xué)生在生活中很少經(jīng)歷,造成學(xué)生對問題缺少最基本的感性認(rèn)識,這樣就會讓學(xué)生在閱讀和理解題干的時候造成干擾。
應(yīng)用性問題在考查學(xué)生數(shù)學(xué)知識基礎(chǔ)同時,更要檢驗學(xué)生的數(shù)學(xué)能力水平。在初中數(shù)學(xué)知識范圍內(nèi),應(yīng)用性問題一般指方程(組)和不等式(組):一元一次方程、二元一次方程(組)、一元二次方程、一元一次不等式(組)。在平常實際課堂教學(xué)過程,由于學(xué)生人生閱歷的關(guān)系造成學(xué)生對外部世界的了解僅憑自己的感覺,大腦中生活內(nèi)容的儲存量相當(dāng)有限,尤其對生產(chǎn)、生活、科技及社會經(jīng)貿(mào)活動的知識知之甚少,缺少這些知識經(jīng)驗的第一體驗,所以教師和學(xué)生在解決應(yīng)用性問題基本知識概念同時,一定加強這些知識點與實際生活聯(lián)系。
求解實際問題,其一般程序可分以下幾步:
1、審題。仔細(xì)閱讀題目,弄清題意,理順關(guān)系。讀題時要注意對語言去粗取精,提煉加工,抓住關(guān)鍵的字詞句。
2、建模。選取基本變量,將文字語言抽象概括成數(shù)學(xué)語言,依據(jù)有關(guān)定義、公理和數(shù)學(xué)知識,建立數(shù)學(xué)模型。
3、解模。根據(jù)數(shù)學(xué)知識和數(shù)學(xué)方法,求解數(shù)學(xué)模型,得到數(shù)學(xué)問題的結(jié)果。
4、檢驗(回歸)。把數(shù)學(xué)結(jié)果回歸到實際問題中去,通過分析、判斷、驗證得到實際問題的結(jié)果,回歸時要利用實際意義的條件進(jìn)行檢驗取舍,找出正確結(jié)果。
二、幾何綜合題型
幾何型綜合題考查知識點多,條件隱晦,要求學(xué)生有較強的理解能力、分析能力、解決問題的能力,對數(shù)學(xué)基礎(chǔ)知識、數(shù)學(xué)基本方法有較強的駕馭能力,并有較強的創(chuàng)新意識和創(chuàng)新能力。
(1)幾何型綜合題,常用相似與圓的有關(guān)知識作為考查重點,并貫穿幾何、代數(shù)、三角函數(shù)等知識,以證明、計算等題型出現(xiàn)。
(2)幾何計算是以幾何推理為基礎(chǔ)的幾何量的計算,主要有線段和弧的長度的計算,角的三角函數(shù)值的計算,以及各種圖形面積的計算等。
(3)幾何論證題主要考查學(xué)生綜合應(yīng)用所學(xué)幾何知識的能力。
幾何論證型綜合問題,常以相似形、圓的知識為背景,串聯(lián)其他幾何知識。順利證明幾何問題取決于下列因素:
①熟悉各種常見問題的基本證明;
②能準(zhǔn)確添加基本輔助線;
③對復(fù)雜圖形能進(jìn)行恰當(dāng)?shù)姆纸馀c組合;
④善于選擇證題的起點并轉(zhuǎn)化問題。
幾何計算型綜合問題,其中以線段的計算最為常見,線段的計算通常是通過勾股定理、相交弦定理、切割線定理及推論、相似三角形對應(yīng)邊成比例所提供的等式進(jìn)行的,這些等式可以根據(jù)不同的已知條件轉(zhuǎn)化為方程或方程組。
1一個方法
幾何圖形可以直觀的表示出來,在人們認(rèn)識圖形的初級階段主要依靠形象思維。人們對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實驗手段,人們可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。
2一個策略
幾何證明常用的方法是綜合法,它是以題設(shè)作為出發(fā)點,根據(jù)已確定的公理和定理,逐步推理,直接推得結(jié)論成立(或問題解決)。在綜合法的思路過程中,我們應(yīng)當(dāng)研究由題設(shè)的條件(或部分的條件)能得出哪些中間結(jié)果,進(jìn)而再研究由這些中間結(jié)果(或它們的組合)又能得到哪些結(jié)果,如此繼續(xù)研究思考,直到推出題中的結(jié)論成立。
三、動態(tài)類綜合題型
函數(shù)、相似、動態(tài)這三者放在一起,無論是平??荚囘€是中考,都會是一個“香餑餑”。甚至一些地方中考最后壓軸題,都會以這樣的題干出現(xiàn)。如何解決這類問題?這類問題切入點是什么?自然成了很多學(xué)生學(xué)習(xí)和教師日常教學(xué)關(guān)注熱點,那么我們一起來看一下:
因動點產(chǎn)生的函數(shù)、相似三角形等綜合問題一般有三個解題途徑:
1、利用已知三角形中對應(yīng)角、對應(yīng)邊,通過相似在未知三角形中利用勾股定理、三角函數(shù)、對稱、旋轉(zhuǎn)等知識來推導(dǎo)邊的大小。
2、當(dāng)三角形相似對應(yīng)點未確定時,先要分析已知三角形的邊和角的特點,進(jìn)而得出已知三角形是否為特殊三角形。根據(jù)未知三角形中已知邊與已知三角形的可能對應(yīng)邊分類討論。
3、若兩個三角形的各邊均未給出,則應(yīng)先設(shè)所求點的坐標(biāo)進(jìn)而用函數(shù)解析式來表示各邊的長度,之后利用相似來列方程求解。
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.
七年級數(shù)學(xué)上冊知識點歸納
一. 教學(xué)內(nèi)容:
數(shù)據(jù)收集整理知識初步
二. 教學(xué)重點:
(1)了解全面調(diào)查和抽樣調(diào)查的一般步驟,會用統(tǒng)計圖表來描述數(shù)據(jù),會用統(tǒng)計思想解決實際問題
(2)用樣本估計總體的思想的應(yīng)用
(3)根據(jù)數(shù)據(jù)設(shè)計簡單的統(tǒng)計圖表
三. 知識點掃描:
(1)為了一定目的而對考察對象進(jìn)行的全面調(diào)查,稱之為普查。
其中所要考察對象的全體稱為總體,而組成總體的每一考察對象稱為個體
(2)人們從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫作總體的一個樣本
四. 中考考點分析:
本部分知識中考中出現(xiàn)頻率較多,近年來統(tǒng)計題目背景的'選取與人民生活息息相關(guān),充分體現(xiàn)了課改的思想,也提高了考生做題的興趣,數(shù)據(jù)統(tǒng)計圖的內(nèi)容每年都在考查,主要考查對統(tǒng)計圖的分析;補全統(tǒng)計圖。
教學(xué)內(nèi)容:
六年級下冊第5~7 例3、例4
教學(xué)目的:
1、借助數(shù)軸初步學(xué)會比較正數(shù)、0和負(fù)數(shù)之間的大小。
2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結(jié)構(gòu)的初步構(gòu)建。
教學(xué)重、難點:負(fù)數(shù)與負(fù)數(shù)的大小比較。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入,提出目標(biāo)
1、讀數(shù),指出哪些是正數(shù),哪些是負(fù)數(shù)?
-128
25.06
+0.019
-2/3
+16/57
0 -82
2、如果+10%表示增加10%,那么-26%表示()
3、某日傍晚,九仙山的氣溫由上午的零上2攝氏度下降了5攝氏度,這天傍晚九仙山的氣溫是()攝氏度。
4、提出學(xué)習(xí)目標(biāo)
二、交流探索,學(xué)生展示
(一)教學(xué)例3
1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)
2、出示例3:
(1)問:你能在一條直線上表示他們運動后的情況嗎?
(2)讓學(xué)生確定好起點(原點)、方向和單位長度。學(xué)生畫完交流。
(3)教師在黑板上畫好直線,在相應(yīng)的點上用小圖片代表大樹和學(xué)生,在問怎樣用數(shù)表示這些學(xué)生和大樹的相對位置關(guān)系?(讓學(xué)生把直線上的點和正負(fù)數(shù)對應(yīng)起來)。
(4)學(xué)生展示,教師在相應(yīng)點的下方標(biāo)出對應(yīng)的數(shù),再讓學(xué)生說說直線上其他幾個點代表的數(shù),讓學(xué)生對數(shù)軸上的點表示的正負(fù)數(shù)形成相對完整的認(rèn)識。
(5)總結(jié):我們可以像這樣在直線上表示出正數(shù)、0和負(fù)數(shù),像這樣的直線我們叫數(shù)軸。
(6)引導(dǎo)學(xué)生觀察:
A、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
B、在數(shù)軸上分別找到1.5和-1.5對應(yīng)的點。如果從起點分別到.5和-1.5處,應(yīng)如何運動?
(7)練習(xí):p7做一做
第1、2題。
(二)教學(xué)例4
1、出示未來一周的天氣情況,讓學(xué)生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
2、學(xué)生交流比較的方法。
3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
4、再讓學(xué)生進(jìn)行比較,利用學(xué)生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學(xué)生比較“8〉6,但是-8〈-6”,使學(xué)生初步體會兩負(fù)數(shù)比較大小時,絕對值大的負(fù)數(shù)反而小。
6、小結(jié):負(fù)數(shù)比0小,正數(shù)比0大,負(fù)數(shù)比正數(shù)小。
7、練習(xí):P7做一做
第3題。
三、應(yīng)用練習(xí),拓展延伸
1、練習(xí)一
第4、5、6題。
2、按順序排列
-23 25
-12
0 -3.6
3、-6和0相差多少? -6和+6相差多少?
四、歸納總結(jié)
學(xué)生交流學(xué)習(xí)心得
(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
(2)負(fù)數(shù)比0小,正數(shù)比0大,負(fù)數(shù)比正數(shù)小。
初一下冊數(shù)學(xué)知識點總結(jié)
相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。
平行線及其判定
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。
平行線的性質(zhì)
性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。
性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。
平移
向左平移a個單位長度,可以得到對應(yīng)點(x-a,y)
向上平移b個單位長度,可以得到對應(yīng)點(x,y+b)
向下平移b個單位長度,可以得到對應(yīng)點(x,y-b)
初一下冊數(shù)學(xué)知識點
多項式除以單項式
一、單項式
1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。
2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。
3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。
4、單獨一個數(shù)或一個字母也是單項式。
5、只含有字母因式的單項式的系數(shù)是1或―1。
6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。
7、單獨的一個非零常數(shù)的次數(shù)是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數(shù)包括它前面的符號。
10、單項式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。
11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。
12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數(shù)項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。
三、整式
1、單項式和多項式統(tǒng)稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。
七年級數(shù)學(xué)公式大全(下學(xué)期)
1 每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù) 2 1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù) 3 速度×?xí)r間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價
5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù) 7 被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù) 8 因數(shù)×因數(shù)=積 積÷一個因數(shù)=另一個因數(shù) 9 被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù) 小學(xué)數(shù)學(xué)圖形計算公式 1 正方形
C周長 S面積 a邊長 周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a 3 長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形
S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏ 9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側(cè)面積=底面周長×高 (2)表面積=側(cè)面積+底面積×2 (3)體積=底面積×高 (4)體積=側(cè)面積÷2×半徑 10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3 總數(shù)÷總份數(shù)=平均數(shù) 和差問題的公式 (和+差)÷2=大數(shù) (和-差)÷2=小數(shù) 和倍問題
和÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù)) 差倍問題
差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù)) 植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那么: 株數(shù)=段數(shù)+1=全長÷株距-1 全長=株距×(株數(shù)-1) 株距=全長÷(株數(shù)-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么:
株數(shù)=段數(shù)=全長÷株距 全長=株距×株數(shù) 株距=全長÷株數(shù)
⑶如果在非封閉線路的兩端都不要植樹,那么:
株數(shù)=段數(shù)-1=全長÷株距-1 全長=株距×(株數(shù)+1) 株距=全長÷(株數(shù)+1)
相信《七年級上數(shù)學(xué)課件(范例五篇)》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準(zhǔn)備了七年級數(shù)學(xué)課件專題,希望您能喜歡!
相關(guān)推薦
我們?yōu)槟砹恕捌吣昙壣蟽哉n件”的相關(guān)資料供您參考。老師工作中的一部分是寫教案課件,但教案課件不是隨便寫寫就可以的。提高教學(xué)質(zhì)量需要教師做好教案并將其貫徹到教學(xué)實踐當(dāng)中。繼續(xù)閱讀以獲取更多信息!...
為了教學(xué)更加順利,老師需要提前準(zhǔn)備教案和課件,并且每份課件都需要設(shè)計得更加完善。學(xué)生的反應(yīng)可以幫助老師及時評估自己的教學(xué)效果。為了讓您滿意,編輯專門制作了“七年級上冊數(shù)學(xué)課件”,但請注意,此頁面的信息僅供參考,請慎重對待!...
小編選擇了最有價值的“七年級上冊生物課件”資料供讀者方便參考,我們后續(xù)還將不斷提供這方面的內(nèi)容。教學(xué)過程中教案課件是基本部分,撰寫教案課件是每位老師都要做的事。?學(xué)生的反饋可以反映教學(xué)的成功與否。...
小學(xué)數(shù)學(xué)是后面幾個階段數(shù)學(xué)的基礎(chǔ),作為一名優(yōu)秀的小學(xué)數(shù)學(xué)教師,為了讓學(xué)生有解決實際問題的能力,教案是老師良好教學(xué)工作的基礎(chǔ),撰寫教案必不可少!那么,有沒有更好的辦法讓自己的小學(xué)數(shù)學(xué)教案有一定的深度呢?小編花時間特意編輯了五年級數(shù)學(xué)上冊課件,強烈建議你能收藏本頁以方便閱讀!分?jǐn)?shù)與除法:理解分?jǐn)?shù)與除法的...
在教學(xué)過程中,教師的首要任務(wù)是準(zhǔn)備好教案和課件?,F(xiàn)在是寫教案和課件的時候了。教案是教育教學(xué)改革的重要策略之一,那么課件教案應(yīng)該如何制作呢?希望這份"七年級上數(shù)學(xué)課件"能夠幫助您更清楚地了解與相關(guān)問題,歡迎您閱讀并收藏,讓我們一起探索創(chuàng)作的無限可能!...
最新更新