高數(shù)課件。
編輯為您整理的“高數(shù)課件”類內(nèi)容,希望能夠讓您有所收獲。非常感謝您光臨我們的網(wǎng)站,并建議您收藏本頁(yè)以便日后再次訪問(wèn)。一般來(lái)說(shuō),老師在給學(xué)生上課之前會(huì)提前準(zhǔn)備好教案和課件,編寫(xiě)教案和課件需要花費(fèi)一些心思。教案是教育教學(xué)實(shí)踐中“以教治學(xué)”的重要體現(xiàn)。
一、教材分析
1.教材所處的地位和作用
本節(jié)課主要內(nèi)容是兩種循環(huán)語(yǔ)句。學(xué)生在前面已經(jīng)學(xué)習(xí)了算法的三種基本結(jié)構(gòu)的框圖,學(xué)習(xí)了輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句和條件語(yǔ)句,這些都是學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)基礎(chǔ)。
本節(jié)在教材中起著承上啟下的作用。一方面把框圖轉(zhuǎn)化為語(yǔ)言,將循環(huán)結(jié)構(gòu)在計(jì)算機(jī)上實(shí)現(xiàn),另一方面為學(xué)習(xí)較復(fù)雜的流程圖打下基礎(chǔ)。本節(jié)課對(duì)學(xué)生算法語(yǔ)言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解for語(yǔ)句與while語(yǔ)句的結(jié)構(gòu)與含義,并會(huì)應(yīng)用
難點(diǎn):應(yīng)用兩種循環(huán)語(yǔ)句將具體問(wèn)題程序化,搞清for循環(huán)和while循環(huán)的區(qū)別和聯(lián)系
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
初步掌握三種不同的循環(huán)語(yǔ)句的形式、執(zhí)行過(guò)程和比較對(duì)循環(huán)語(yǔ)句的作用。
2.過(guò)程與方法目標(biāo):
通過(guò)本節(jié)課的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題,創(chuàng)造性思維的能力和自學(xué)能力。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
在學(xué)習(xí)過(guò)程及解決實(shí)際問(wèn)題的過(guò)程中,盡可能的用基本算法語(yǔ)句描述算法、體會(huì)算法思想的作用及應(yīng)用,增進(jìn)對(duì)算法的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感、積極的學(xué)習(xí)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
1.復(fù)習(xí)引入
復(fù)習(xí)循環(huán)結(jié)構(gòu),目的是承上啟下,以舊引新,一方面引起學(xué)生對(duì)舊知識(shí)的回憶,另一方面為引入循環(huán)語(yǔ)句作鋪墊。
操作方法:師生共同在黑板上畫(huà)出框圖,并對(duì)重點(diǎn)適當(dāng)強(qiáng)調(diào)。
例1.設(shè)計(jì)一個(gè)計(jì)算
的算法并寫(xiě)出相應(yīng)的框圖。
直到型當(dāng)型
復(fù)習(xí)的時(shí)候通過(guò)提問(wèn)的方式強(qiáng)調(diào)重點(diǎn),學(xué)生通過(guò)對(duì)比,發(fā)現(xiàn)差異。
2.探索新知
通過(guò)上面的兩種循環(huán)結(jié)構(gòu)程序框圖,引出今天所要學(xué)習(xí)的兩種循環(huán)語(yǔ)句,他們分別對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(wHILE型)和直到型(UNTIL型)兩種語(yǔ)句結(jié)構(gòu)。即wHILE語(yǔ)句和UNTIL語(yǔ)句。
下面就向?qū)W生們介紹這兩種語(yǔ)句的一般格式,并在相應(yīng)位置作出對(duì)應(yīng)的程序框圖。之后提問(wèn):通過(guò)對(duì)照,大家覺(jué)得wHILE型語(yǔ)句與UNTIL型語(yǔ)句之間有什么區(qū)別呢?(學(xué)生獨(dú)立思考,交流討論、教師予以提示,點(diǎn)撥指導(dǎo)。由特殊到一般培養(yǎng)學(xué)生的觀察、歸納、概括能力)
3.例題精析
例2把例1的直到型循環(huán)框圖轉(zhuǎn)化為程序。
教師將直到型語(yǔ)句寫(xiě)在直到型結(jié)構(gòu)旁邊,并連線,告訴學(xué)生,這就是直到型循環(huán)語(yǔ)句。通過(guò)這樣的訓(xùn)練,使學(xué)生意識(shí)到程序和框圖是一一對(duì)應(yīng)的,寫(xiě)程序只需把框圖翻譯成相應(yīng)的語(yǔ)句即可。并且對(duì)循環(huán)語(yǔ)句有了一個(gè)大體的印象??梢耘囵B(yǎng)學(xué)生的觀察能力和對(duì)比能力
例3.求平方值小于1000的最大整數(shù)
.(wHILE型)語(yǔ)句的理解
4.課堂小結(jié)
⑴循環(huán)語(yǔ)句的兩種不同形式:wHILE語(yǔ)句和UNTIL語(yǔ)句(另補(bǔ)充了for語(yǔ)句),掌握它們的一般格式。
⑵在用wHILE語(yǔ)句和UNTIL語(yǔ)句編寫(xiě)程序解決問(wèn)題時(shí),一定要注意它們的格式及條件的表述方法。
⑶循環(huán)語(yǔ)句主要用來(lái)實(shí)現(xiàn)算法中的循環(huán)結(jié)構(gòu),在處理一些需要反復(fù)執(zhí)行的運(yùn)算任務(wù)。如累加求和,累乘求積等問(wèn)題中常用到。
(通過(guò)師生合作總結(jié),使學(xué)生對(duì)本節(jié)課所學(xué)的知識(shí)結(jié)構(gòu)有一個(gè)明確的認(rèn)識(shí),抓住本節(jié)的重點(diǎn)。)
5.布置作業(yè)
必做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫(huà)出程序框圖,寫(xiě)出相應(yīng)程序。
選做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫(huà)出程序框圖,寫(xiě)出相應(yīng)程序。
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
6.板書(shū)設(shè)計(jì)
總結(jié):
(1)知識(shí)目標(biāo):
1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;
2.會(huì)由圓的方程寫(xiě)出圓的半徑和圓心,能根據(jù)條件寫(xiě)出圓的方程.
(2)能力目標(biāo):
1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問(wèn)題的能力;
2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).
(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點(diǎn).難點(diǎn)
(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.
3.教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境(啟迪思維)
問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?
[引導(dǎo)] 畫(huà)圖建系
[學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛?cè)脒@個(gè)隧道。
(二)深入探究(獲得新知)
問(wèn)題二:1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時(shí)又如何呢?
[學(xué)生活動(dòng)] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)M(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點(diǎn)間的距離公式,點(diǎn)M適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本P77練習(xí)1)
(1)圓心在原點(diǎn),半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .
2.根據(jù)圓的方程寫(xiě)出圓心和半徑
(1) ; (2) .
II.靈活應(yīng)用(提升能力)
問(wèn)題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問(wèn)題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線方程.
[學(xué)生活動(dòng)]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是: .
III.實(shí)際應(yīng)用(回歸自然)
問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實(shí)際問(wèn)題情境]
(四)反饋訓(xùn)練(形成方法)
問(wèn)題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點(diǎn)A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.
3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線方程.
4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線方程.
(五)小結(jié)反思(拓展引申)
1.課堂小結(jié):
(1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:
當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:
(2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法
(3) 已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線的方程是:
(4) 求解應(yīng)用問(wèn)題的一般方法
2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4
(B)思維拓展型作業(yè):
試推導(dǎo)過(guò)圓 上一點(diǎn) 的切線方程.
3.激發(fā)新疑:
問(wèn)題七:1.把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式?
2.方程: 的曲線是什么圖形?
教學(xué)設(shè)計(jì)說(shuō)明
圓是學(xué)生比較熟悉的曲線,初中平面幾何對(duì)圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點(diǎn)確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡(jiǎn)單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實(shí)際問(wèn)題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問(wèn)題,并通過(guò)圓的方程在實(shí)際問(wèn)題中的應(yīng)用,增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,能力與知識(shí)的形成相伴而行,這樣的設(shè)計(jì)不但突出了重點(diǎn),更使難點(diǎn)的突破水到渠成.
本節(jié)課的設(shè)計(jì)了五個(gè)環(huán)節(jié),以問(wèn)題為紐帶,以探究活動(dòng)為載體,使學(xué)生在問(wèn)題的指引下、教師的指導(dǎo)下把探究活動(dòng)層層展開(kāi)、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識(shí)的過(guò)程轉(zhuǎn)變?yōu)閷W(xué)生觀察問(wèn)題、發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程,在解決問(wèn)題的同時(shí)鍛煉了思維.提高了能力。
一.說(shuō)教材
1.1 教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析
本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊(cè))》5.6函數(shù)圖象的定位作圖法的第一課時(shí),主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。
函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡(jiǎn)的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對(duì)應(yīng)思想、換元方法等。
1.2 教學(xué)目標(biāo)
1.2.1知識(shí)目標(biāo)
⑴、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號(hào)的關(guān)系。
⑵、能較熟練地化簡(jiǎn)較復(fù)雜的函數(shù)解析式,找出對(duì)應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。
⑶、初步學(xué)會(huì)應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。
1.2.2能力目標(biāo)
⑴、在數(shù)學(xué)實(shí)驗(yàn)平臺(tái)上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過(guò)程,提高觀察、歸納、概括能力。
⑵、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問(wèn)題,學(xué)會(huì)借助于數(shù)學(xué)軟件等工具研究、探索和解決問(wèn)題,學(xué)會(huì)數(shù)學(xué)
地解決問(wèn)題。
⑶、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺(jué)等)。
1.2.3情感目標(biāo)
培養(yǎng)學(xué)生積極參與、合作交流的主體意識(shí),在知識(shí)的探索和發(fā)現(xiàn)的過(guò)程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。
1.3 教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用
難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡(jiǎn)函數(shù)解析式、研究復(fù)雜函數(shù)
教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識(shí)的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡(jiǎn)單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說(shuō)明這段內(nèi)容不能采取簡(jiǎn)單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然?!?/p>
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
⑴、從學(xué)生已有知識(shí)出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺(tái),分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號(hào)的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯(cuò)誤原因,使學(xué)生認(rèn)識(shí)到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識(shí)解析式形式化的特點(diǎn)。
⑶、數(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡(jiǎn)單實(shí)驗(yàn)報(bào)告的形式,通過(guò)學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對(duì)平移變換規(guī)律知識(shí)的建構(gòu)。
二.說(shuō)教法
針對(duì)職高一年級(jí)學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識(shí)建構(gòu)過(guò)程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。
本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程是活動(dòng)的過(guò)程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會(huì)經(jīng)受足夠的親身體驗(yàn),親歷知識(shí)的自主建構(gòu)過(guò)程;使學(xué)生學(xué)會(huì)從具體情境中提取適當(dāng)?shù)母拍?,從觀察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會(huì)數(shù)學(xué)地思考。
另一方面,注重創(chuàng)設(shè)機(jī)會(huì)使學(xué)生有機(jī)會(huì)看到數(shù)學(xué)的全貌,體會(huì)數(shù)學(xué)的全過(guò)程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開(kāi),以問(wèn)題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會(huì)如何應(yīng)用規(guī)律解決問(wèn)題,體會(huì)知識(shí)的價(jià)值,增強(qiáng)求知欲。
總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說(shuō)學(xué)法
“學(xué)之道在于悟,教之道在于度?!睂W(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過(guò)程中須將學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生。
美國(guó)某大學(xué)有一句名言:“讓我聽(tīng)見(jiàn)的,我會(huì)忘記;讓我看見(jiàn)的,我就領(lǐng)會(huì)了;讓我做過(guò)的,我就理解了?!蓖ㄟ^(guò)學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì)知識(shí)”,更主要的是要讓學(xué)生“會(huì)學(xué)知識(shí)”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識(shí)既不是教出來(lái)的,也不是學(xué)出來(lái)的,而是研究出來(lái)的。”本節(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識(shí)與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時(shí)學(xué)會(huì)數(shù)學(xué)地思考。
四.說(shuō)程序
4.1創(chuàng)設(shè)情境,引入課題
在簡(jiǎn)要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問(wèn)題“如何研究 的性質(zhì)?”
引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過(guò)描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問(wèn)題化歸為 的問(wèn)題,借助于基本函數(shù) 的性質(zhì)解決新問(wèn)題。
從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。
4.2數(shù)學(xué)實(shí)驗(yàn),自主探索
這一環(huán)節(jié)主要分兩階段。
1、嘗試初探
引例、函數(shù) 與 圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫(huà)板的度量功能,給出兩個(gè)對(duì)應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。
2、實(shí)驗(yàn)發(fā)現(xiàn)
本階段由學(xué)生以小組合作探索的形式完成,通過(guò)填寫(xiě)實(shí)驗(yàn)報(bào)告的形式完成探索規(guī)律的任務(wù)。 實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺(tái)1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫(xiě)下表,并總結(jié)其中的平移變換規(guī)律。
函數(shù) 解析式平移變換規(guī)律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗(yàn)結(jié)論
通過(guò)一年來(lái)的學(xué)習(xí)與摸索,如何引導(dǎo)學(xué)生在高三數(shù)學(xué)復(fù)習(xí)的過(guò)程中抓住根本,合理利用時(shí)間,提高學(xué)習(xí)效律,對(duì)于高三的教學(xué)工作有一些體會(huì)和反思,我結(jié)合高三教學(xué)的實(shí)際情況,認(rèn)為以下幾點(diǎn)在當(dāng)前的教學(xué)形勢(shì)下依然不可忽視,自我小結(jié)如下:
一、不可忽視課本。
對(duì)于一個(gè)沒(méi)有高考教學(xué)經(jīng)驗(yàn)的教師來(lái)說(shuō),如何盡快地進(jìn)入角色,在有限的時(shí)間里達(dá)到最佳的復(fù)習(xí)效果,就必須深入了解高考,解答大量的高考題,了解哪些是重點(diǎn)。首先,我仔細(xì)地研究了近年數(shù)學(xué)高考試題,在試卷內(nèi)容上變化不大,重點(diǎn)難點(diǎn)也較穩(wěn)定,沒(méi)有大的變化,但是每年都會(huì)出現(xiàn)一些新的題型,或是讓我們意料不到的題。但是,他們都不脫離課本的基本知識(shí)。而且基本知識(shí)考查分?jǐn)?shù)占到70%以上。其次,關(guān)注教材和新大綱的變化也很重要。每年的試題都與教材有著密切的聯(lián)系,有的是直接利用教材中的例題、習(xí)題、公式定理的證明作為高考題;有的是將教材中的題目略加修改、變形后作為高考題目;還有的是將教材中的題目合理拼湊、組合作為高考題的。
二、不可忽視"雙基"。
從近幾年來(lái)高考命題事實(shí)中我們可以看到:基本知識(shí)、基本技能、基本方法始終是高考數(shù)學(xué)試題考查的重點(diǎn)。開(kāi)始在教學(xué)中過(guò)于粗疏或?qū)W生在學(xué)習(xí)中對(duì)基本知識(shí)不求甚解,很容易導(dǎo)致學(xué)生在考試中判斷錯(cuò)誤。然而,近幾年的高考數(shù)學(xué)試題對(duì)基礎(chǔ)知識(shí)的要求更高、更嚴(yán)了,只有基礎(chǔ)扎實(shí)的考生才能正確地判斷。也只能有扎實(shí)的基礎(chǔ)知識(shí)、基本技能,才能在一些難題中思路清晰,充分發(fā)揮解題能力,取得高分;另一方面,由于試題量大,解題速度慢的考生往往無(wú)法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。很多學(xué)生考試結(jié)束后就這樣感嘆:不是做不來(lái),是不粗心了。我卻不這么認(rèn)為。往往基本知識(shí)出現(xiàn)了錯(cuò)誤,主要原因還是在平時(shí)練習(xí)中不注重細(xì)節(jié),沒(méi)有嚴(yán)格的答題步驟,甚至很多學(xué)生做題只是看題,感覺(jué)做的來(lái)就不管他了,沒(méi)有認(rèn)真的去完成基本格式及其步驟。以至于考試時(shí),時(shí)間、準(zhǔn)確度、書(shū)寫(xiě)格式等均出現(xiàn)或多或少的問(wèn)題,從而導(dǎo)致丟分。
三、不可忽視《考試大綱》和《新課程標(biāo)準(zhǔn)》。
《考試大綱》是高考命題的依據(jù)。研究《考試說(shuō)明》可以同時(shí)分析歷年的高考試題,以加深對(duì)它的理解,體會(huì)平時(shí)教學(xué)與命題的專家們?cè)诶斫狻犊荚嚧缶V》上的差距,并爭(zhēng)取縮小這一差距,才能克服盲目性,增強(qiáng)自覺(jué)性,更好地指導(dǎo)考生進(jìn)行復(fù)習(xí)。比如,《考試大綱》指出:"考試要求分成4個(gè)不同的層次,這4個(gè)層次由低到高依次為了解、理解、掌握、靈活運(yùn)用和綜合運(yùn)用"。但如何界定"了解、理解、掌握、靈活運(yùn)用和綜合運(yùn)用",《考試大綱》并未明確指出。同樣,《考試大綱》還指出:"考試旨在測(cè)試中學(xué)數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能、基本方法,運(yùn)算能力、邏輯思維能力、空間想象能力以及運(yùn)用所學(xué)數(shù)決問(wèn)題的能力"。這些能力如何界定,如何具體化?上述種種都只能通過(guò)深入研究近年來(lái)的高考數(shù)學(xué)試題才能使之具體化,從而指導(dǎo)我們平時(shí)的教學(xué)工作。從這個(gè)意義上來(lái)說(shuō),研究《考試大綱》,分析近年來(lái)的高考數(shù)學(xué)試題是非常必要的。
四、反思教學(xué)
在復(fù)習(xí)的過(guò)程中,特別是做題、單元考試、大型考試后,我都會(huì)經(jīng)常的回頭看一看,停下來(lái)想一想,自己的復(fù)習(xí)對(duì)學(xué)生的成績(jī)的提高有沒(méi)有實(shí)效,是否使學(xué)生掌握的知識(shí)和技能得到了鞏固和深化,分析問(wèn)題和解決問(wèn)題的能力是否得到了提高。這樣時(shí)常反思就可以根據(jù)學(xué)生的實(shí)際情況有針對(duì)性的進(jìn)行知識(shí)復(fù)習(xí)和解題訓(xùn)練,而不是簡(jiǎn)單做完習(xí)題對(duì)完答案就可以萬(wàn)事大吉了。同時(shí)對(duì)典型習(xí)題、代表性習(xí)題的練習(xí)更加多下功夫,針對(duì)這方面我采取將省和各市質(zhì)檢卷試題中的易錯(cuò)題、重點(diǎn)題重新拼起來(lái),讓學(xué)生重復(fù)的練習(xí),防止范相同的錯(cuò)誤。這樣學(xué)生遇到做過(guò)的題目的時(shí)候就能夠很清楚的了解該題考查了什么內(nèi)容,其特征是什么,還有其他更好的解法嗎?長(zhǎng)期堅(jiān)持對(duì)典型習(xí)題的練習(xí)就能化腐朽為神奇、能掌握數(shù)學(xué)知識(shí)及其運(yùn)用的內(nèi)在規(guī)律和聯(lián)系,善于抓住關(guān)鍵,靈活的解決數(shù)學(xué)問(wèn)題,從而能夠達(dá)到舉一反三的目的,久而久之,學(xué)生分析問(wèn)題和解決問(wèn)題的能力就會(huì)有所提升。反思高三的教學(xué)其實(shí)最重要的就是“抓落實(shí)”。一模過(guò)后,學(xué)生對(duì)于自己知識(shí)的掌握情況有所了解,我就要求每個(gè)學(xué)生針對(duì)自己的情況并且對(duì)照高考大綱的要求找出自己還有哪些知識(shí)點(diǎn)掌握的不是很好,然后由我歸納出來(lái),挑出重點(diǎn)來(lái),再根據(jù)這些相應(yīng)的出些習(xí)題,希望在這個(gè)環(huán)節(jié)中將學(xué)生的薄弱環(huán)節(jié)全都消滅掉。復(fù)習(xí)過(guò)程中我一直注意知識(shí)的全面性、重點(diǎn)性、精確性、聯(lián)系性和應(yīng)用性,這也是我去年教學(xué)主要遵守的原則以及復(fù)習(xí)的主導(dǎo)思想,我認(rèn)為這樣的復(fù)習(xí)針對(duì)我班學(xué)生是有一定效果的。另外,我還時(shí)常在每次月考后,找一些考試成績(jī)變化大的學(xué)生交流下學(xué)習(xí)問(wèn)題,找到他們?cè)趯W(xué)習(xí)過(guò)程中出現(xiàn)的問(wèn)題,幫助他們找正學(xué)習(xí)方法。
一、課題:
人教版全日制普通高級(jí)中學(xué)教科書(shū)數(shù)學(xué)第一冊(cè)(上)《2.7對(duì)數(shù)》
二、指導(dǎo)思想與理論依據(jù):
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實(shí)際背景和應(yīng)用價(jià)值,開(kāi)展“數(shù)學(xué)建?!钡膶W(xué)習(xí)活動(dòng),把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個(gè)數(shù)學(xué)概念的引入,總有它的現(xiàn)實(shí)或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強(qiáng)調(diào)它的現(xiàn)實(shí)背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識(shí)的發(fā)展水到渠成而不是強(qiáng)加于人,從而有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)內(nèi)容的實(shí)際背景和應(yīng)用的價(jià)值。在教學(xué)設(shè)計(jì)時(shí),既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價(jià)值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,發(fā)展能力。在課程實(shí)施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會(huì)進(jìn)步、人類文化建設(shè)中的作用,同時(shí)反映社會(huì)發(fā)展對(duì)數(shù)學(xué)發(fā)展的促進(jìn)作用。
三、教材分析:
本節(jié)內(nèi)容主要學(xué)習(xí)對(duì)數(shù)的概念及其對(duì)數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識(shí)。而對(duì)數(shù)的概念是對(duì)數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過(guò)對(duì)數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問(wèn)題,以及對(duì)數(shù)函數(shù)的相關(guān)問(wèn)題。
四、學(xué)情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認(rèn)知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)的概念是水到渠成的事。
五、教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):
1.對(duì)數(shù)的概念。
2.對(duì)數(shù)式與指數(shù)式的互化。
(二)能力目標(biāo):
1.理解對(duì)數(shù)的概念。
2.能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化。
(三)德育滲透目標(biāo):
1.認(rèn)識(shí)事物之間的相互聯(lián)系與相互轉(zhuǎn)化,
2.用聯(lián)系的觀點(diǎn)看問(wèn)題。
六、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)是對(duì)數(shù)定義,難點(diǎn)是對(duì)數(shù)概念的理解。
七、教學(xué)方法:
講練結(jié)合法八、教學(xué)流程:
問(wèn)題情景(復(fù)習(xí)引入)——實(shí)例分析、形成概念(導(dǎo)入新課)——深刻認(rèn)識(shí)概念(對(duì)數(shù)式與指數(shù)式的互化)——變式分析、深化認(rèn)識(shí)(對(duì)數(shù)的性質(zhì)、對(duì)數(shù)恒等式,介紹自然對(duì)數(shù)及常用對(duì)數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))
八、教學(xué)反思:
對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。
對(duì)于本教學(xué)設(shè)計(jì),時(shí)間倉(cāng)促,不足之處在所難免,期待與各位同仁交流。
一、說(shuō)教材
1.從在教材中的地位與作用來(lái)看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).
3.學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說(shuō)目標(biāo)
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.
過(guò)程與方法目標(biāo):
通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價(jià)值觀:
通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).
三、說(shuō)過(guò)程
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:
1.創(chuàng)設(shè)情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢?
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫(xiě)出麥??倲?shù).帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
3.類比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.
對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)
再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫(huà)龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
教學(xué)目標(biāo)
1.使學(xué)生了解反函數(shù)的概念;
2.使學(xué)生會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù);
3.培養(yǎng)學(xué)生用辯證的觀點(diǎn)觀察、分析解決問(wèn)題的能力。
教學(xué)重點(diǎn)
1.反函數(shù)的概念;
2.反函數(shù)的求法。
教學(xué)難點(diǎn)
反函數(shù)的概念。
教學(xué)方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);
第二張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。
教學(xué)過(guò)程
(I)講授新課
(檢查預(yù)習(xí)情況)
師:這節(jié)課我們來(lái)學(xué)習(xí)反函數(shù)(板書(shū)課題)§2.4.1反函數(shù)的概念。
同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對(duì)反函數(shù)的概念有了初步的了解,誰(shuí)來(lái)復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?
生:(略)
(學(xué)生回答之后,打出幻燈片A)。
師:反函數(shù)的定義著重強(qiáng)調(diào)兩點(diǎn):
(1)根據(jù)y=f(x)中x與y的關(guān)系,用y把x表示出來(lái),得到x=φ(y);
(2)對(duì)于y在c中的任一個(gè)值,通過(guò)x=φ(y),x在A中都有惟一的值和它對(duì)應(yīng)。
師:應(yīng)該注意習(xí)慣記法是由記法改寫(xiě)過(guò)來(lái)的。
師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?
生:一一映射確定的函數(shù)才有反函數(shù)。
(學(xué)生作答后,教師板書(shū),若學(xué)生答不來(lái),教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個(gè)集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請(qǐng)同學(xué)們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關(guān)系呢?
生:(學(xué)生作答,教師板書(shū))函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。
師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。
從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫(xiě)成y=f–1(x),即對(duì)調(diào)x=f–1(y)中的x、y。
(3)指出反函數(shù)的定義域。
下面請(qǐng)同學(xué)自看例1
(II)課堂練習(xí)課本P68練習(xí)1、2、3、4。
(III)課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。
(IV)課后作業(yè)
一、課本P69習(xí)題2.41、2。
二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動(dòng)手作題中要求作的圖象。
板書(shū)設(shè)計(jì)
課題:求反函數(shù)的方法步驟:
定義:(幻燈片)
注意:小結(jié)
一一映射確定的
函數(shù)才有反函數(shù)
函數(shù)與它的反函
數(shù)定義域、值域的關(guān)系。
尊敬的各位評(píng)委、老師們:
大家好!
今天我說(shuō)課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說(shuō)明。
一、教材分析
教材的地位和作用:
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。
學(xué)情分析:
本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔械臅r(shí)候已經(jīng)學(xué)習(xí)過(guò)有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對(duì)二次函數(shù)的圖像由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問(wèn)題的能力。
二、教學(xué)目標(biāo)分析
基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:
1.知識(shí)與技能
理解二次函數(shù)中參數(shù)a,b,c,h,k對(duì)其圖像的影響;
2.過(guò)程與方法
通過(guò)體驗(yàn)對(duì)二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。
3.情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下:
重點(diǎn):二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。
難點(diǎn):探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。
四、教法與學(xué)法分析
1、教法分析
基于以上對(duì)教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。
五、教學(xué)過(guò)程
為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。
(1)知識(shí)導(dǎo)入
溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè)體驗(yàn)。
(2)講授新課
例1:畫(huà)出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像
讓學(xué)生畫(huà)出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對(duì)比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。
前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過(guò)程,即a>0開(kāi)口向上,a
(3)鞏固練習(xí)
我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁(yè)1-3題。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對(duì)圖像的影響。
(4)歸納總結(jié)
我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。
一、探究式教學(xué)模式概述
1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習(xí)活動(dòng),通過(guò)自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神??梢?jiàn),探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過(guò)程和探究知識(shí)的過(guò)程統(tǒng)一起來(lái),充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。
2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來(lái)展開(kāi)的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現(xiàn)規(guī)律。
3、探究式教學(xué)模式的特征。
(1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯?wèn)題會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維?,F(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程?!彼耘囵B(yǎng)學(xué)生的問(wèn)題意識(shí)是探究式教學(xué)的重要使命。
(2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達(dá)到清楚、全面理解的境界。”探究式教學(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來(lái)組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。
(3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長(zhǎng)處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機(jī)遇與挑戰(zhàn)。
二、教學(xué)設(shè)計(jì)案例
1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。
2、教學(xué)目標(biāo)。
(1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。
(2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。
(3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過(guò)程。
3、教學(xué)方法:談話探究法,討論探究法。
4、教學(xué)過(guò)程。
(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問(wèn)題占有重要位置。我們?cè)?jīng)做過(guò)的有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?
(2)提出問(wèn)題。
問(wèn)題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()
A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)
問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?
(3)探究思考。點(diǎn)評(píng):乍一看問(wèn)題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問(wèn)題的途徑。
教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫(xiě)出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?
學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。
教師:此結(jié)論的正確性如何?
學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?
教師:好。
學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。
設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來(lái)上述結(jié)論正確。所以得到如下定理。
定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問(wèn)題,請(qǐng)同學(xué)們先解答問(wèn)題1。
學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:?jiǎn)l(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問(wèn)學(xué)生。
學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數(shù)字之和都不是9的倍數(shù)。
教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。
學(xué)生:3+4+5+6=18是9的倍數(shù)。
教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。
故應(yīng)選D。
(4)學(xué)以致用。
問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?
教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問(wèn)題2有何想法?
學(xué)生討論:
學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。
學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類:一類是5個(gè)數(shù)字中無(wú)0,另一類是5個(gè)數(shù)字中有0(但不含3)。
學(xué)生3:第一類:5個(gè)數(shù)字中無(wú)0的五位偶數(shù)有。
第二類:5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。
學(xué)生4:由分類計(jì)數(shù)原理得:能被6整除的無(wú)重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。
(5)概括強(qiáng)化。
重點(diǎn):了解數(shù)字排列問(wèn)題的特點(diǎn),理解掌握數(shù)字排列中3、9問(wèn)題的規(guī)律。
難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。
關(guān)鍵:證明的思路以及定理的得出。
新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。
(6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類問(wèn)題的目的。
總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來(lái)的,新課程改革強(qiáng)調(diào)改變課程過(guò)于注重知識(shí)的傳授和過(guò)于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂(lè)于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過(guò)程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過(guò)程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。
教學(xué)目的:使學(xué)生熟練掌握奇偶函數(shù)的判定以及奇偶函數(shù)性質(zhì)的靈活應(yīng)用;
培養(yǎng)學(xué)生化歸、分類以及數(shù)形結(jié)合等數(shù)學(xué)思想;提高學(xué)生分析、解題的能力。
教學(xué)過(guò)程:
一、知識(shí)要點(diǎn)回顧
1、奇偶函數(shù)的定義:應(yīng)注意兩點(diǎn):①定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)為奇偶函數(shù)的必要非充分條件。②f(x)f(x)或f(x)f(x)是定義域上的恒等式(對(duì)定義域中任一x均成立)。
2、判定函數(shù)奇偶性的方法(首先注意定義域是否為關(guān)于原點(diǎn)的對(duì)稱區(qū)間)
①定義法判定(有時(shí)需將函數(shù)化簡(jiǎn),或應(yīng)用定義的變式:f(x)f(x)f(x)f(x)0f(x)1(f(x)0)。f(x)
②圖象法。
③性質(zhì)法。
3、奇偶函數(shù)的性質(zhì)及其應(yīng)用
①奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱;②奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;③偶函數(shù)圖象關(guān)于y軸對(duì)稱,并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;④若奇函數(shù)f(x)的定義域包含0,則f(0)=0;⑤f(x)為偶函數(shù),則f(x)f(x);⑥y=f(x+a)為偶函數(shù)
而偶函數(shù)y=f(x+a)的對(duì)稱軸為f(xa)f(xa)f(x)對(duì)稱軸為x=a,x=0(y軸);⑦兩個(gè)奇函數(shù)的和差是奇函數(shù),積商是偶函數(shù);兩個(gè)偶函數(shù)的和差、積商都是偶函數(shù);一奇一偶的兩個(gè)函數(shù)的積商是奇函數(shù)。
二、典例分析
例1:試判斷下列函數(shù)的奇偶性
|x|(x1)0;(1)f(x)|x2||x2|;(2)f(x);(3)f(x)x2x1__(x0)(4)f(x);(5)ylog2(x;(6)f(x)loga。2x1__(x0)
解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。簡(jiǎn)析:(1)用定義判定;
(2)先求定義域?yàn)閇,再化簡(jiǎn)函數(shù)得f(x)則f(x)f(x),為奇函數(shù);
(3)定義域不對(duì)稱;
(4)x注意分段函數(shù)奇偶性的判定;
(5)、均利用f(x)f(x)0判定。
例2,(1)已知f(x)是奇函數(shù)且當(dāng)x>0時(shí),f(x)x32x21則xR時(shí)x32x21(x0)f(x)0(x0)32x2x1(x0)
(2)設(shè)函數(shù)yf(x1)為偶函數(shù),若x1時(shí)yx21,則x>1時(shí),yx24x5。
簡(jiǎn)析:本題為奇偶函數(shù)對(duì)稱性的靈活應(yīng)用。
(1)中當(dāng)x
也可畫(huà)出示意圖,由原點(diǎn)左邊圖象上任一點(diǎn)(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(x,y)在右邊的圖象上可得y(x)32(x)21yx32x21。
(2)中yf(x1)為偶函數(shù)f(x1)f(x1)f(x)的對(duì)稱軸為
x=1故x=1右邊的圖象上任一點(diǎn)(x,y)關(guān)于x=1的對(duì)稱點(diǎn)(x2,y)在
(可畫(huà)圖幫助分析)。yx21上,∴y(x2)21x24x5。
本題也可利用二次函數(shù)的性質(zhì)確定出解析式。
練習(xí):設(shè)f(x)是定義在[—1,1]上的偶函數(shù),g(x)與f(x)圖象關(guān)于直線x=1對(duì)稱,當(dāng)x[2,3]時(shí)g(x)2t(x2)4(x2)3(t為常數(shù)),則f(x)的表達(dá)式為xx。
例3:若奇函數(shù)f(x)是定義在(—1,1)上的增函數(shù),試解關(guān)于a的不等式f(a2)f(a24)0。
分析:抽象函數(shù)組成的不等式的求解,常利用函數(shù)的單調(diào)性脫去“f”符號(hào),轉(zhuǎn)化為關(guān)于自變量的不等式求解,但要注意定義域)。
解:依題意得f(a2)f(a24)f(4a2)(∵f(x)為奇函數(shù))又∵f(x)是定義在(—1,1)上的單調(diào)增函數(shù)
1a21∴1a241
2a24aa2
∴解集是{aa2}
變式1:設(shè)定義在[—2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1m)f(m),求實(shí)數(shù)m的取值范圍。|1m||m|簡(jiǎn)解:依題意得21m2
2m2121m
(注意數(shù)形結(jié)合解題)
變式2:設(shè)定義在[—2,2]上的偶函數(shù)y=f(x+1)在區(qū)間[0,2]上單調(diào)遞減,若f(1—m)
11m3簡(jiǎn)解:依題意得1m3
|1m1||m1|1m22
例4,已知函數(shù)f(x)滿足f(x+y)+f(x—y)=2f(x)·f(y),(x,yR),且
(1)f(0)=1,(2)f(x)的圖象關(guān)于y軸對(duì)稱。f(0)0,試證:
(分析:抽象函數(shù)奇偶性的證明,常用到賦值法及奇偶性的定義)。解:(1)令x=y=0,有f(0)f(0)2f2(0),又f(0)0∴f(0)1。
(2)令x=0,得f(y)f(y)2f(0)f(y)2f(y)
∴f(y)f(y)(yR)
∴f(x)為偶函數(shù),∴f(x)的圖象關(guān)于y軸對(duì)稱。
歸類總結(jié)出抽象函數(shù)的解題方法與技巧。
變式訓(xùn)練:設(shè)f(x)是定義在(0,)上的減函數(shù),且對(duì)于任意x,y(0,)x都有f()f(x)f(y)y
1(1)求f(1);(2)若f(4)=1,解不等式f(x6)f()2x
(點(diǎn)明題型特征及解題方法)
三、小結(jié)
1、奇偶性的判定方法;
2、奇偶性的靈活應(yīng)用(特別是對(duì)稱性);
3、求解抽象不等式及抽象函數(shù)的常用方法。
四、課后練習(xí)及作業(yè)
1、完成《教學(xué)與測(cè)試》相應(yīng)習(xí)題。
2、完成《導(dǎo)與練》相應(yīng)習(xí)題。
高中一年級(jí)的新同學(xué)們,當(dāng)你們踏進(jìn)高中校門(mén),漫步在優(yōu)美的校園時(shí),看見(jiàn)老師嚴(yán)謹(jǐn)而熱心的教學(xué)和師兄、師姐深切的關(guān)懷時(shí),我想你們會(huì)暗暗決心:爭(zhēng)取學(xué)好高中階段的各門(mén)學(xué)科。在新的高考制度"3+綜合"普遍吹散全國(guó)大地之時(shí),代表人們基本素質(zhì)的"3"科中,數(shù)學(xué)是最能體現(xiàn)一個(gè)人的思維能力,判斷能力、反應(yīng)敏捷能力和聰明程度的學(xué)科。數(shù)學(xué)直接影響著國(guó)民的基本素質(zhì)和生活質(zhì)量,良好的數(shù)學(xué)修養(yǎng)將為人的一生可持續(xù)發(fā)展奠定基礎(chǔ),高中階段則應(yīng)可能充分反映學(xué)習(xí)者對(duì)數(shù)學(xué)的不同需求,使每個(gè)學(xué)生都能學(xué)習(xí)適合他們自己的數(shù)學(xué)。
一、高中數(shù)學(xué)課的設(shè)置
高中數(shù)學(xué)內(nèi)容豐富,知識(shí)面廣泛,高一年級(jí)上學(xué)期學(xué)習(xí)第一冊(cè)(上):第一章集合與簡(jiǎn)易邏輯;第二章函數(shù);第三章數(shù)列。高一年級(jí)下學(xué)期學(xué)習(xí)第一冊(cè)(下):第四章三角函數(shù);第五章平面向量。高二年級(jí)上學(xué)期學(xué)習(xí)第二冊(cè)(上):第六章不等式;第七章直線和圓的方程;第八章圓錐曲線方程。高二年級(jí)下學(xué)期學(xué)習(xí)第二冊(cè)(下):第九章直線、平面、簡(jiǎn)單幾何體;第十章排列、組合和概率。高二結(jié)束將有數(shù)學(xué)"會(huì)考"。高三年級(jí)文科生學(xué)習(xí)第三冊(cè)(選修1):第一章統(tǒng)計(jì);第二章極限與導(dǎo)數(shù)。高三年級(jí)理科生學(xué)習(xí)第三冊(cè)(選修2):第一章概率與統(tǒng)計(jì);第二章極限;第三章導(dǎo)數(shù);第四章復(fù)數(shù)。高三還將進(jìn)行全面復(fù)習(xí),并有重要的"高考"。
二、初中數(shù)學(xué)與高中數(shù)學(xué)的差異。
1、知識(shí)差異。初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是"0-1800"范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和"-300"等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》(第九章直線、平面、簡(jiǎn)單幾何體),將在三維空間中求角和距離等。
還將學(xué)習(xí)"排列組合"知識(shí),以便解決排隊(duì)方法種數(shù)等問(wèn)題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,(=6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場(chǎng)次?(答:=3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開(kāi)平方無(wú)意義,但在高中規(guī)定了i2=--1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
2、學(xué)習(xí)方法的差異。
(1)初中課堂教學(xué)量小、知識(shí)簡(jiǎn)單,通過(guò)教師課堂教慢的速度,爭(zhēng)取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過(guò)大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開(kāi)設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
(2)模仿與創(chuàng)新的區(qū)別。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開(kāi)拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績(jī)也只能是一般程度。現(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢(shì)思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來(lái)了不利的思維定勢(shì),對(duì)高中學(xué)生帶來(lái)了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
3、學(xué)生自學(xué)能力的差異
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問(wèn)題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽(tīng)課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過(guò)較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開(kāi)發(fā)在不斷的多樣化,近年來(lái)提出了應(yīng)用型題、探索型題和開(kāi)放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
4、思維習(xí)慣上的差異
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問(wèn)題的思維受到了局限,就幾何來(lái)說(shuō),我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問(wèn)題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
5、定量與變量的差異
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問(wèn)題時(shí),大多是按定量來(lái)分析問(wèn)題,這樣的思維和問(wèn)題的解決過(guò)程,只能片面地、局限地解決問(wèn)題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問(wèn)題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過(guò)對(duì)變量的分析,探索出分析、解決問(wèn)題的思路和解題所用的數(shù)學(xué)思想。
三、如何學(xué)好高中數(shù)學(xué)
良好的開(kāi)端是成功的一半,高中數(shù)學(xué)課即將開(kāi)始與初中知識(shí)有聯(lián)系,但比初中數(shù)學(xué)知識(shí)系統(tǒng)。高一數(shù)學(xué)中我們將學(xué)習(xí)函數(shù),函數(shù)是高中數(shù)學(xué)的重點(diǎn),它在高中數(shù)學(xué)中是起著提綱的作用,它融匯在整個(gè)高中數(shù)學(xué)知識(shí)中,其中有數(shù)學(xué)中重要的數(shù)學(xué)思想方法;如:函數(shù)與方程思想、數(shù)形結(jié)合思想等,它也是高考的重點(diǎn),近年來(lái),高考?jí)狠S題都以函數(shù)題為考察方法的。高考題中與函數(shù)思想方法有關(guān)的習(xí)題占整個(gè)試題的60%以上。
1、有良好的學(xué)習(xí)興趣
兩千多年前孔子說(shuō)過(guò):"知之者不如好之者,好之者不如樂(lè)之者。"意思說(shuō),干一件事,知道它,了解它不如愛(ài)好它,愛(ài)好它不如樂(lè)在其中。"好"和"樂(lè)"就是愿意學(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛(ài)好,愛(ài)好它就要去實(shí)踐它,達(dá)到樂(lè)在其中,有興趣才會(huì)形成學(xué)習(xí)的主動(dòng)性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂(lè)趣出發(fā)上升為自覺(jué)的理性的"認(rèn)識(shí)"過(guò)程,這自然會(huì)變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?
(1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問(wèn),產(chǎn)生好奇心。
(2)聽(tīng)課中要配合老師講課,滿足感官的興奮性。聽(tīng)課中重點(diǎn)解決預(yù)習(xí)中疑問(wèn),把老師課堂的提問(wèn)、停頓、教具和模型的演示都視為欣賞音樂(lè),及時(shí)回答老師課堂提問(wèn),培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問(wèn)的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。
(3)思考問(wèn)題注意歸納,挖掘你學(xué)習(xí)的潛力。
(4)聽(tīng)課中注意老師講解時(shí)的數(shù)學(xué)思想,多問(wèn)為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?
(5)把概念回歸自然。所有學(xué)科都是從實(shí)際問(wèn)題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、至交坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來(lái)的。只有回歸現(xiàn)實(shí)才能使對(duì)概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會(huì)準(zhǔn)確。
2、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過(guò)重復(fù)練習(xí)而鞏固下來(lái)的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。
3、有意識(shí)培養(yǎng)自己的各方面能力
數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計(jì)算能力、空間想象能力和分析解決問(wèn)題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時(shí)學(xué)習(xí)中要注意開(kāi)發(fā)不同的學(xué)習(xí)場(chǎng)所,參與一切有益的學(xué)習(xí)實(shí)踐活動(dòng),如數(shù)學(xué)第二課堂、數(shù)學(xué)競(jìng)賽、智力競(jìng)賽等活動(dòng)。
平時(shí)注意觀察,比如,空間想象能力是通過(guò)實(shí)例凈化思維,把空間中的實(shí)體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會(huì)精心設(shè)計(jì)"智力課"和"智力問(wèn)題"比如對(duì)習(xí)題的解答時(shí)的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開(kāi)設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。
四、其它注意事項(xiàng)
1、注意化歸轉(zhuǎn)化思想學(xué)習(xí)。
人們學(xué)習(xí)過(guò)程就是用掌握的知識(shí)去理解、解決未知知識(shí)。數(shù)學(xué)學(xué)習(xí)過(guò)程都是用舊知識(shí)引出和解決新問(wèn)題,當(dāng)新的知識(shí)掌握后再利用它去解決更新知識(shí)。初中知識(shí)是基礎(chǔ),如果能把新知識(shí)用舊知識(shí)解答,你就有了化歸轉(zhuǎn)化思想了??梢?jiàn),學(xué)習(xí)就是不斷地化歸轉(zhuǎn)化,不斷地繼承和發(fā)展更新舊知識(shí)。
2、學(xué)會(huì)數(shù)學(xué)教材的數(shù)學(xué)思想方法。
數(shù)學(xué)教材是采用蘊(yùn)含披露的方式將數(shù)學(xué)思想溶于數(shù)學(xué)知識(shí)體系中,因此,適時(shí)對(duì)數(shù)學(xué)思想作出歸納、概括是十分必要的。概括數(shù)學(xué)思想一般可分為兩步進(jìn)行:一是揭示數(shù)學(xué)思想內(nèi)容規(guī)律,即將數(shù)學(xué)對(duì)象其具有的屬性或關(guān)系抽取出來(lái),二是明確數(shù)學(xué)思想方法知識(shí)的聯(lián)系,抽取解決全體的框架。實(shí)施這兩步的措施可在課堂的聽(tīng)講和課外的自學(xué)中進(jìn)行。
課堂學(xué)習(xí)是數(shù)學(xué)學(xué)習(xí)的主戰(zhàn)場(chǎng)。課堂中教師通過(guò)講解、分解教材中的數(shù)學(xué)思想和進(jìn)行數(shù)學(xué)技能地訓(xùn)練,使高中學(xué)生學(xué)習(xí)所得到豐富的數(shù)學(xué)知識(shí),教師組織的科研活動(dòng),使教材中的數(shù)學(xué)概念、定理、原理得到最大程度的理解、挖掘。如初中學(xué)習(xí)的相反數(shù)概念教學(xué)中,教師的課堂教學(xué)往往有以下理解:①?gòu)亩x角度求3、-5的相反數(shù),相反數(shù)是的數(shù)是_____.②從數(shù)軸角度理解:什么樣的兩點(diǎn)表示數(shù)是互為相反數(shù)的。(關(guān)于原點(diǎn)對(duì)稱的點(diǎn))③從絕對(duì)值角度理解:絕對(duì)值_______的兩個(gè)數(shù)是互為相反數(shù)的。④相加為零的兩個(gè)數(shù)互為相反數(shù)嗎?這些不同角度的教學(xué)會(huì)開(kāi)闊學(xué)生思維,提高思維品質(zhì)。望同學(xué)們把握好課堂這個(gè)學(xué)習(xí)的主戰(zhàn)場(chǎng)。
五、學(xué)數(shù)學(xué)的幾個(gè)建議。yjS21.com
1、記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師為備戰(zhàn)高考而加的課外知識(shí)。
2、建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。
3、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。
4、與同學(xué)建立好關(guān)系,爭(zhēng)做"小老師",形成數(shù)學(xué)學(xué)習(xí)"互助組"。
5、爭(zhēng)做數(shù)學(xué)課外題,加大自學(xué)力度。
6、反復(fù)鞏固,消滅前學(xué)后忘。
7、學(xué)會(huì)總結(jié)歸類??桑孩?gòu)臄?shù)學(xué)思想分類②從解題方法歸類③從知識(shí)應(yīng)用上分類
同學(xué)們?cè)诟咧杏袃?yōu)美的學(xué)習(xí)環(huán)境,有一群樂(lè)于事業(yè)的熱心教師,全體教師經(jīng)驗(yàn)豐富,他們甘愿為你們做鋪路石直至你們走進(jìn)高等學(xué)校大門(mén)。我們數(shù)學(xué)組的全體教師一定會(huì)使你們成為數(shù)學(xué)學(xué)習(xí)的成功。
相信《高數(shù)課件11篇》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計(jì)劃的必備網(wǎng)站,請(qǐng)您收藏yjs21.com。同時(shí),編輯還為您精選準(zhǔn)備了高數(shù)課件專題,希望您能喜歡!
相關(guān)推薦
每位教師都應(yīng)該在課前準(zhǔn)備一份完整的教案和課件,只要事先準(zhǔn)備好教案和課件就可以了。根據(jù)學(xué)生在課堂上的不同反應(yīng),教師可以制定不同的教學(xué)策略。如果你想了解有關(guān)“數(shù)松果課件”的信息,編輯整理的資訊一定會(huì)讓你滿意,僅供參考,讓我們一起來(lái)看看吧!...
我們常說(shuō),機(jī)會(huì)是留給有準(zhǔn)備的人。在平日里的學(xué)習(xí)中,幼兒園教師時(shí)常會(huì)提前準(zhǔn)備好有用的資料。資料一般指生產(chǎn)、生活中閱讀,學(xué)習(xí),參考必需的東西。資料可以幫助我們更高效地完成各項(xiàng)工作。可是,我們的幼師資料具體又有哪些內(nèi)容呢?以下由小編為大家精心整理的“函數(shù)課件”,供你參考,希望能夠幫助到大家。23冪函數(shù) 教...
欄目小編帶來(lái)了一篇很不錯(cuò)的關(guān)于“高數(shù)課件”的文章值得一讀,本網(wǎng)頁(yè)內(nèi)容僅為您提供參考。在教學(xué)過(guò)程中,老師教學(xué)的首要任務(wù)是備好教案課件,每個(gè)老師對(duì)于寫(xiě)教案課件都不陌生。教案是加強(qiáng)師生互動(dòng)的重要方式。...
這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫(xiě)好。只有寫(xiě)好教案,才能打造出完整的課堂教學(xué)。...
前輩告訴我們,做事之前提前下功夫是成功的一部分。在學(xué)習(xí)工作中,幼兒園教師有提前準(zhǔn)備可能會(huì)使用到資料的習(xí)慣。資料包含著人類在社會(huì)實(shí)踐,科學(xué)實(shí)驗(yàn)和研究過(guò)程中所匯集的經(jīng)驗(yàn)。參考資料可以促進(jìn)我們的學(xué)習(xí)工作效率的提升。所以,你有哪些值得推薦的幼師資料內(nèi)容呢?小編特別為你收集的“最新代數(shù)式課件精選11篇”,如果...
最新更新