高中數(shù)學(xué)教案。
基于您的需要,我們整理了“高中數(shù)學(xué)教案”。老師都需要為每堂課準備教案課件,撰寫教案課件是每位老師都要做的事。?學(xué)生反應(yīng)可以幫助教師及時評估自己的教學(xué)效果。感謝瀏覽本內(nèi)容旨在為你提供實用信息!
教學(xué)準備
1.教學(xué)目標
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
(1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會求一些簡單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習函數(shù)的必要性和重要性,激發(fā)學(xué)習的積極性.
教學(xué)重點/難點
重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);
難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)用具
多媒體
4.標簽
函數(shù)及其表示
教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、復(fù)習初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時間的變化關(guān)系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.
3、分析、歸納以上三個實例,它們有什么共同點;
4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
(二)研探新知
1、函數(shù)的有關(guān)概念
(1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對應(yīng)關(guān)系和值域
(3)區(qū)間的概念
①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
③區(qū)間的數(shù)軸表示.
(4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.
師:歸納總結(jié)
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
(1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
(3)當a>0時,求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0
所以s==(40-x)x(0
引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:
(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.
(4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)
(5)滿足實際問題有意義.
鞏固練習:課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
2兩個函數(shù)相等當且僅當它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
解:
課本P18例2
(四)歸納小結(jié)
①從具體實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.
(五)設(shè)置問題,留下懸念
1、課本P24習題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.
課堂小結(jié)
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學(xué)習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
四、教學(xué)目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數(shù)學(xué)的興趣.
五、教學(xué)重點與難點:
教學(xué)重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當?shù)亟o出——
例題1:(1) 已知a(-2,0), b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是( )。
(a)橢圓 (b)雙曲線 (c)線段 (d)不存在
(2)已知動點 m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是( )。
(a)橢圓 (b)雙曲線 (c)拋物線 (d)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習之后,學(xué)生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過適當?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
高中數(shù)學(xué)趣味競賽題(共10題)
1 、撒謊的有幾人
5個高中生有,她們面對學(xué)校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了。”
瑪麗:“我曾經(jīng)去過昆明?!?惠美:“瑪麗在撒謊。”
千葉子:“瑪麗和惠美都在撒謊?!?那么,這5個人之中到底有幾個人在撒謊呢?
2、她們到底是誰
有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。
穿黑色衣服的女子說:“我不是天使?!?穿藍色衣服的女子說:“我不是人?!?穿白色衣服的女子說:“我不是惡魔?!蹦敲?,這三人到底分別是誰呢?
3、半只小貓
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家??墒?,只剩下1只小貓了。
“一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只。” “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?
4、被蟲子吃掉的算式
一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。
那么,請問原來的算式是什么樣子的呢?
5、巧動火柴
用16根火柴擺成5個正方形。請移動2根火柴,
使
正形變成4。
6、折過來的角
把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?
7、星形角之和
求星形尖端的角度之和。
8、啊!雙胞胎?
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。
結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?
9、贈送和降價哪個更好?
1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?
10、折成15度
用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?
教學(xué)目標
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學(xué)生掌握組合數(shù)的計算公式;
(3)通過學(xué)習組合知識,讓學(xué)生掌握類比的學(xué)習方法,并提高學(xué)生分析問題和解決問題的能力;
教學(xué)重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應(yīng)用題.
教學(xué)過程設(shè)計
(-)導(dǎo)入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學(xué)生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動)指導(dǎo)學(xué)生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學(xué)生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學(xué)生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學(xué)生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動)思考分析.
解 首先,根據(jù)組合的定義,有
①
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計意圖:例題教學(xué)循序漸進,讓學(xué)生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習 學(xué)會應(yīng)用】
(教師活動)給出練習,學(xué)生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學(xué)生活動)板演、解答.
設(shè)計意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學(xué)習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.
教學(xué)目標
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學(xué)生掌握組合數(shù)的計算公式;
(3)通過學(xué)習組合知識,讓學(xué)生掌握類比的學(xué)習方法,并提高學(xué)生分析問題和解決問題的能力;
教學(xué)重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應(yīng)用題.
教學(xué)過程設(shè)計
(-)導(dǎo)入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學(xué)生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動)指導(dǎo)學(xué)生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學(xué)生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學(xué)生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .
根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當中去.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學(xué)習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.
作業(yè)參考答案
2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.
3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時,則賀卡有3種分配方法.
甲拿丙制作的賀卡時,則賀卡有3種分配方法.
甲拿丁制作的賀卡時,則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).
一、自我介紹
我姓x,是你們的數(shù)學(xué)老師,因為是數(shù)學(xué)老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學(xué)習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來思考為什么要學(xué)習數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個問題。
(一)為什么要學(xué)習數(shù)學(xué)
相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學(xué)老師我表達上不如文科老師迂回婉轉(zhuǎn)和風趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學(xué)系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學(xué)系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學(xué)是有用的,數(shù)學(xué)有助于提高能力。
數(shù)學(xué)家華羅庚在《人民日報》精彩描述了數(shù)學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學(xué)計算過程中發(fā)現(xiàn)的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個問題的研究,進而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關(guān)。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的'一封快信。發(fā)信人就是勒威耶。信中,勒威耶預(yù)告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預(yù)告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國天文學(xué)家湯博發(fā)現(xiàn)冥王星,當時錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過近30年的進一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經(jīng)過多年的爭論,國際天文學(xué)聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學(xué)聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。
馬克思說:"一種科學(xué)只有在成功運用數(shù)學(xué)時,才算達到了真正完善的地步。"正因為數(shù)學(xué)是日常生活和進一步學(xué)習必不可少的基礎(chǔ)和工具,一切科學(xué)到了最后都歸結(jié)為數(shù)學(xué)問題。
其實在我們的周圍有很多事情都是可以用數(shù)學(xué)可以來解決的,無非很多人都沒有用數(shù)學(xué)的眼光來看待。
問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結(jié)論呢?(讓同學(xué)發(fā)言)
我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據(jù)假設(shè),既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與"無論什么力量都搬不動的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當然,我們學(xué)習的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分?,F(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習更高層次的理科打好基礎(chǔ),同時,也為了掌握一些數(shù)學(xué)的思考方法以及分析問題解決問題的思維方式。哲學(xué)家培根說過:"讀詩使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明…",也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過具體的例子來體驗一下某些數(shù)學(xué)思想方法和思維方式。
故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數(shù)學(xué)知識耍些小聰明,使問題妙不可言。
數(shù)學(xué)游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學(xué)思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的地位是無法被代替的??傊?,學(xué)習數(shù)學(xué)可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創(chuàng)造……
(二)如何學(xué)好數(shù)學(xué)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強,高中很注重自學(xué)能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學(xué)能力的培養(yǎng),誰的自學(xué)能力強,那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點:
第一:對數(shù)學(xué)學(xué)科特點有清楚的認識
主編寄語里是這樣描述數(shù)學(xué)的特征的:數(shù)學(xué)是自然的。數(shù)學(xué)的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復(fù)數(shù),都是由自然的認知沖突引起的。因此,在學(xué)習過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學(xué)不下去了。
第二:要改變一個觀念。
有人會說自己的基礎(chǔ)不好。那我問下什么是基礎(chǔ)?今天所學(xué)的知識就是明天的基礎(chǔ)。明天學(xué)習的知識就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。過去的幾年里我分別帶過五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺差不多,應(yīng)該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學(xué)外課自主時間的投入太少,學(xué)習習慣不太好。
第三:學(xué)數(shù)學(xué)要摸索自己的學(xué)習方法
學(xué)習、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有千萬條,每個人都可以有與眾不同的數(shù)學(xué)學(xué)習方法。做習題、用數(shù)學(xué)解決各種問題是必需的,理解、學(xué)會證明、領(lǐng)會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學(xué)會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學(xué)習。同時,注意前后知識的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養(yǎng)成良好的學(xué)習習慣(與一中學(xué)生相比較)
㈠課前預(yù)習。怎樣預(yù)習呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預(yù)習不是很隨便的把課本看一邊,預(yù)習有個目標,那就是通過預(yù)習可以把書本后面的練習題可以自己獨立的完成。一中的同學(xué)預(yù)習就已經(jīng)有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復(fù)習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學(xué)課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應(yīng)的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應(yīng)位置上,這樣以后復(fù)習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
㈢關(guān)于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學(xué)請教,請教做題目的思路,而不是整個過程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養(yǎng)成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復(fù)習了。我高中的時候就是采用這樣的方法把數(shù)學(xué)成績提高。
好的開始是成功的一半,新的學(xué)期開始了,請大家調(diào)整好自己的思想,找到學(xué)習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學(xué)都有個好的開始。
【考綱要求】
了解雙曲線的定義,幾何圖形和標準方程,知道它的簡單性質(zhì)。
【自學(xué)質(zhì)疑】
1.雙曲線 的 軸在 軸上, 軸在 軸上,實軸長等于 ,虛軸長等于 ,焦距等于 ,頂點坐標是 ,焦點坐標是 ,
漸近線方程是 ,離心率 ,若點 是雙曲線上的點,則 , 。
2.又曲線 的左支上一點到左焦點的距離是7,則這點到雙曲線的右焦點的距離是
3.經(jīng)過兩點 的雙曲線的標準方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過點 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點,求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點對稱的兩個點,點 是橢圓上任意一點,當直線 的斜率都存在,并記為 時,那么 之積是與點 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。
3.設(shè)雙曲線 的半焦距為 ,直線 過 兩點,已知原點到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點 到一個焦點的距離為 ,則它到另一個焦點的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過點 的雙曲線的一個焦點到一條漸近線的距離是 。
3.若雙曲線 上一點 到它的右焦點的距離是 ,則點 到 軸的距離是
4.過雙曲線 的左焦點 的直線交雙曲線于 兩點,若 。則這樣的直線一共有 條。
【遷移應(yīng)用】
1. 已知雙曲線 的焦點到漸近線的距離是其頂點到漸近線距離的2倍,則該雙曲線的離心率
2. 已知雙曲線 的焦點為 ,點 在雙曲線上,且 ,則點 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個頂點到它的一條漸近線的距離為 ,則
5. 設(shè) 是等腰三角形, ,則以 為焦點且過點 的雙曲線的離心率為 .
6. 已知圓 。以圓 與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件的雙曲線的標準方程為
一、什么是教學(xué)案例
教學(xué)案例是真實而又典型且含有問題的事件。簡單地說,一個教學(xué)案例就是一個包含有疑難問題的實際情境的描述,是一個教學(xué)實踐過程中的故事,描述的是教學(xué)過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學(xué)案例是事件:教學(xué)案例是對教學(xué)過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對教學(xué)現(xiàn)象的動態(tài)性的把握。
教學(xué)案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內(nèi),并且也可能包含有解決問題的方法在內(nèi)。正因為這一點,案例才成為一種獨特的研究成果的表現(xiàn)形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實再現(xiàn)。是對“當前”課堂中真實發(fā)生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學(xué)案例研究
教學(xué)案例是教師教學(xué)行為真實、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進行教學(xué)案例的研究是教師不斷反思、改進自己教學(xué)的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個環(huán)節(jié):案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學(xué)改革的核心理念、常見的疑難問題和困惑事件相關(guān),一般來說可以從教學(xué)的各個方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問、教學(xué)媒體的使用、教學(xué)評價語言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習方式確定主題——探究性學(xué)習、問題解決學(xué)習、合作學(xué)習、實踐性活動等。另外從學(xué)科特點、教學(xué)內(nèi)容等都可以確定研究的主題。
研究者要了解當前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標準》和有針對性地作一些理論準備。還要通過有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計,進行訪談等),同時初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發(fā)現(xiàn)更有潛力?選擇的事件對學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過去成功的行為嗎?事件呈現(xiàn)的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關(guān)的問題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習、內(nèi)省和深層次理解方面就可能更加富有成效。
高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習規(guī)律的探究:如數(shù)學(xué)學(xué)習習慣、解決問題的思維方式、獨立思考與合作學(xué)習等;(3)教師專業(yè)知識的提升:如數(shù)學(xué)板書與電子屏幕的展示對學(xué)生思維的影響、數(shù)學(xué)語言的訓(xùn)練對人們思維的影響、數(shù)學(xué)知識模式化教學(xué)的優(yōu)劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學(xué)活動的自然狀態(tài)下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學(xué)對象——學(xué)生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學(xué)實錄、教學(xué)程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學(xué)時間分配表等,以便以后繼續(xù)分析案例提供翔實的原始材料。
(2)訪談與調(diào)查。對一些課堂教學(xué)不能觀察到的師生內(nèi)心活動,如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運用以及教學(xué)達標的成效等一些需要進一步了解的問題,可以通過與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實課堂教學(xué)觀察的材料;對學(xué)生在課堂教學(xué)活動中回答問題的心理狀態(tài)、解題思路等問題,也可以在課后做一些問卷調(diào)查;對學(xué)生達標的成度、效度,也可以作一些測試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個教學(xué)環(huán)節(jié)中出現(xiàn)問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過有關(guān)教育理論文獻的查閱,去進一步解讀課堂教學(xué)的活動,挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過學(xué)生的動手操作來獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關(guān)文獻資料,從學(xué)習中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內(nèi)外課堂教學(xué)案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關(guān)鍵教學(xué)事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動中的某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學(xué)疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發(fā)表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對關(guān)鍵教學(xué)事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學(xué)中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點、時間、人物的一些基本情況。當然,這部分的內(nèi)容不宜很長,只需提綱挈領(lǐng)敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動。
C.問題討論
這是根據(jù)主題要求與情景描述,進行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識的要點、教學(xué)法和情景特點以及案例的說明與注意事項。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認識水平與學(xué)生主動學(xué)習的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實錄以及教學(xué)活動背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們??吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標,反之教師期望的目標學(xué)生沒有達到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運用與學(xué)生內(nèi)在動機的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。
2.案例報告撰寫的關(guān)鍵
(1)掌握四個原則。要寫好教學(xué)案例,除了平時多積累素材,學(xué)習他人的案例作品以提高寫作技巧外,還應(yīng)把握以下四點:
A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習的難點和重點,尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學(xué)活動實錄,要反映事件發(fā)生的過程,重點描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發(fā)現(xiàn)。來源于實踐的教學(xué)案例并非都有同等價值,關(guān)鍵要看撰寫者對實踐的發(fā)展與理論的升華程度,包括對題目的推敲。如有的教學(xué)案例重點描述了有戲劇性的情節(jié),用了“細節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長》、《捕捉資源因勢利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內(nèi)容,在明確主題,恰當擬題后再動筆,才能寫出高質(zhì)量的案例。
B.理論性原則:解決問題的策略中應(yīng)當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點撥,師生心理、行為變化情況等,無不體現(xiàn)教師的教學(xué)思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動的事實為主要情節(jié),可以夾敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個主題的幾節(jié)課的情景片段。
D.學(xué)科性原則:數(shù)學(xué)案例報告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標準,滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習慣。就是撰寫者的教育思想和教育理念在教學(xué)實踐中具體體現(xiàn)。
(2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實錄,包括教師和學(xué)生的一言一行。陳述時,根據(jù)操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學(xué)過程進行陳述時,舍去與文題不相關(guān)或不重要的部分,并強化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統(tǒng)計的形式體現(xiàn)撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問題的質(zhì)量等多個問題,都可以在一張或數(shù)張圖表上用百分比或個(次)數(shù)進行統(tǒng)計。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫者的教學(xué)理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應(yīng)汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優(yōu)秀案例的特征
(1)時代性:一個好的案例描述的是現(xiàn)實生活場景——案例的敘述要把事件置于一個時空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問題為著眼點,至少應(yīng)該是近年發(fā)生的事情,展示的整個事實材料應(yīng)該與整個時代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產(chǎn)生移情作用。
(2)真實性:一個好的案例應(yīng)該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應(yīng)注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應(yīng)該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經(jīng)做出的解決問題的決策的評價——評價是為了給新的決策提供參考點??稍诎咐拈_頭或結(jié)尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說明問題,或者在一節(jié)課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認識不夠。
2.缺乏典型性。有的案例對教學(xué)實踐沒有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現(xiàn)象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現(xiàn)為:
(1)主題渙散。有的案例象記流水帳,沒有根據(jù)需要進行恰當?shù)娜∩?,看不出作者要反映、探討什么問題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強案例的可讀性和指導(dǎo)性。如寫成一般的教學(xué)設(shè)計,一般包括“備課思路、教學(xué)目標、教學(xué)重點、教學(xué)方法、課前準備、教學(xué)內(nèi)容、教學(xué)過程”等內(nèi)容;寫成教學(xué)實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創(chuàng)新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
直線的方程
教學(xué)目標
(1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.
(2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習的效果將直接影響后繼知識的學(xué)習.
②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習“曲線方程”打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴謹科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應(yīng)坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習,培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當增加練習,使學(xué)生能更好地掌握,而不是僅停留在觀念上.
[學(xué)習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習重點]
兩角和與差的正弦、余弦、正切公式
[學(xué)習難點]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)優(yōu)秀教案4
一、教學(xué)目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學(xué)重點:
向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。
三、教學(xué)過程:
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結(jié):
1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
排列
教學(xué)目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
教學(xué)重點難點
重點是排列的定義、排列數(shù)并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。
難點是解有關(guān)排列的應(yīng)用題。
教學(xué)過程設(shè)計
一、 復(fù)習引入
上節(jié)課我們學(xué)習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):
1.書架上層放著50本不同的社會科學(xué)書,下層放著40本不同的自然科學(xué)的書.
(1)從中任取1本,有多少種取法?
(2)從中任取社會科學(xué)書與自然科學(xué)書各1本,有多少種不同的取法?
2.某農(nóng)場為了考察三個外地優(yōu)良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區(qū)?
找一同學(xué)談解答并說明怎樣思考的的過程
第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學(xué)書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學(xué)書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會科學(xué)、自然科學(xué)書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學(xué)書,第二步取一本自然科學(xué)書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.
第2題說,共有A,B,C三個優(yōu)良品種,而每個品種在甲類型土地上實驗有三個小區(qū),在乙類型的土地上有三個小區(qū)……所以共需3×5=15個實驗小區(qū).
二、 講授新課
學(xué)習了兩個基本原理之后,現(xiàn)在我們繼續(xù)學(xué)習排列問題,這是我們本節(jié)討論的重點.先從實例入手:
1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?
由學(xué)生設(shè)計好方案并回答.
(1)用加法原理設(shè)計方案.
首先確定起點站,如果北京是起點站,終點站是上?;驈V州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.
(2)用乘法原理設(shè)計方案.
首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經(jīng)選了起點站,終點站只能在其余兩個站去選.那么,根據(jù)乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.
根據(jù)以上分析由學(xué)生(板演)寫出所有種飛機票
再看一個實例.
在航海中,船艦常以“旗語”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?
找學(xué)生談自己對這個問題的想法.
事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).
首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;
其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.
根據(jù)乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數(shù)是:3×2×1=6(種).
根據(jù)學(xué)生的分析,由另外的同學(xué)(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)
第三個實例,讓全體學(xué)生都參加設(shè)計,把所有情況(包括每個位置情況)寫出來.
由數(shù)字1,2,3,4可以組成多少個沒有重復(fù)數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).
根據(jù)乘法原理,從四個不同的數(shù)字中,每次取出三個排成三位數(shù)的方法共有4×3×2=24(個).
請板演的學(xué)生談?wù)勗鯓酉氲?
第一步,先確定百位上的數(shù)字.在1,2,3,4這四個數(shù)字中任取一個,有4種取法.
第二步,確定十位上的數(shù)字.當百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個數(shù)字去取,有3種方法.
第三步,確定個位上的數(shù)字.當百位、十位上的數(shù)字都確定以后,個位上的數(shù)字只能從余下的兩個數(shù)字中去取,有2種方法.
根據(jù)乘法原理,所以共有4×3×2=24種.
下面由教師提問,學(xué)生回答下列問題
(1)以上我們討論了三個實例,這三個問題有什么共同的地方?
都是從一些研究的對象之中取出某些研究的對象.
(2)取出的這些研究對象又做些什么?
實質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.
(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數(shù)字都是元素.
上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.
第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.
第三個問題呢?
從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.
給出排列定義
請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.
下面由教師提問,學(xué)生回答下列問題
(1)按著這個定義,結(jié)合上面的問題,請同學(xué)們談?wù)勈裁词窍嗤呐帕?什么是不同的排列?
從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.
如第一個問題中,北京—廣州,上?!獜V州是兩個排列,第三個問題中,213與423也是兩個排列.
再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.
(2)還需要搞清楚一個問題,“一個排列”是不是一個數(shù)?
生:“一個排列”不應(yīng)當是一個數(shù),而應(yīng)當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數(shù),不用把所有情況羅列出來,才是一個數(shù).前面提到的第三個問題,實質(zhì)上也是這樣的.
三、 課堂練習
大家思考,下面的排列問題怎樣解?
有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)
分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.
解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個放在第1空箱.
第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.
第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.
第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:
所以,共有9種放法.
四、作業(yè)
課本:P232練習1,2,3,4,5,6,7.
一、教學(xué)目標
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
二、教學(xué)重點難點:
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.
三、教學(xué)過程
1.新課導(dǎo)入
在當今社會中,人們從事任何工作、學(xué)習,都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點是邏輯性強,特別是進入高中以后,所學(xué)的教學(xué)比初中更強調(diào)邏輯性.如果不學(xué)習一定的邏輯知識,將會在我們學(xué)習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學(xué)習邏輯的有關(guān)知識.)
學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學(xué)議論結(jié)果,答案是肯定的)
教師提問:什么是命題?
(學(xué)生進行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學(xué)的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補集 .
命題可分為簡單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)m.cnsjbj.cn
我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .
在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學(xué)生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個
至少有一個
至多有個
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學(xué)生討論后得出結(jié)論.)
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時間作適當?shù)谋嫖雠c展開.)
4.課堂練習:第26頁練習1
5.課外作業(yè):第29頁習題1.6
喜歡《高中數(shù)學(xué)教案模板12篇》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼兒園教案,同時,yjs21.com編輯還為您精選準備了高中數(shù)學(xué)教案專題,希望您能喜歡!
相關(guān)推薦
教學(xué)計劃有助于教師收到預(yù)期的教學(xué)效果,假期不知不覺就過去了,新學(xué)期即將開學(xué),新的教學(xué)計劃也要開始書寫了。一篇優(yōu)秀的學(xué)科教學(xué)計劃是怎么樣的呢?下面是幼兒教師教育網(wǎng)精心收集整理,為你帶來的高中數(shù)學(xué)老師教學(xué)計劃,希望對你有所幫助,動動手指請收藏一下!...
幼兒教師教育網(wǎng)編輯特地為大家精心收集和整理了“關(guān)于《數(shù)腳》中班的教案”。教案課件是老師上課做的提前準備,認真規(guī)劃好自己教案課件是每個老師每天都要做的事情。只有教案課件老師寫越充分,課堂氛圍當然也會更好。有需要的朋友就來看看吧!...
俗話說,磨刀不誤砍柴工。在平時的學(xué)習和工作中,幼兒園教師經(jīng)常會提前準備一些資料。資料一般指代可供人們參考的信息知識等。參考資料會讓未來的學(xué)習或者工作做得更好!你是不是在尋找一些可以用到的幼師資料呢?有請閱讀小編為你編輯的高中教師辭職信模板,歡迎你收藏本站,并關(guān)注網(wǎng)站更新!尊敬的領(lǐng)導(dǎo):您好!我因為諸多...
俗話說,機會永遠是留給有準備的人的。作為一名老師是很有必要提前準備好細節(jié)的教案的,教案有利于教師設(shè)計和安排教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等的實踐性教學(xué)文件。若想要寫好一篇教案該怎么做呢?經(jīng)過搜索和整理,我們?yōu)榇蠹页噬详P(guān)于小學(xué)數(shù)學(xué)教案模板范文,或許你能從中找到需要的內(nèi)容。...
最新更新
熱門欄目