教案課件是老師工作中一項必不可少的任務(wù),每位老師每天都要寫教案課件。教材是課堂教學中必備的參考資料。現(xiàn)在,幼兒教師教育網(wǎng)的編輯為大家推薦了一份名為“解直角三角形課件”的文章,希望你能閱讀并發(fā)現(xiàn)其中的驚喜。祝你喜歡!
教學內(nèi)容:等腰直角三角形(活動課)
教學目標:
1、認識等腰直角三角形,知道等腰直角三角形各部分名稱、各個角的度數(shù)和各條邊的關(guān)系。
2、通過實踐操作,拓寬學生的解題渠道,誘發(fā)求異思維,培養(yǎng)創(chuàng)新意識。
3、采用小組合作的學習方式,體驗探索知識的過程,培養(yǎng)合作意識和集體精神。
教學過程:
一、創(chuàng)設(shè)情景,揭示課題。
1、學生拿出課前準備好的正方形紙沿對角線對折。
提問:得到一個什么圖形?(三角形)
2、通過觀察、測量和比較說說這個三角形的特征。
(兩條邊相等,一個角是直角)
提問:那么,這樣的三角形我們叫它什么三角形?
揭示課題,板書:等腰直角三角形
這節(jié)課就讓我們一起來研究等腰直角三角形。
一、麩曲白酒的生產(chǎn)工藝流程 當前麩曲白酒的生產(chǎn),主要采用清蒸法和混燒法兩種生產(chǎn)方法,其工藝流程如下: 1.混燒法工藝流程 ?2.清蒸法工藝流程 二、麩曲白酒生產(chǎn)工藝 (一)原料的粉碎 1. 原料粉碎的目的 原料粉碎可以促進淀粉的均勻吸水,加速膨脹,利于蒸煮糊化。通過粉碎又可增大原料顆粒的表面積,在糖化發(fā)酵過程中以便加強和曲、酵母的接觸,使淀粉盡量得到轉(zhuǎn)化,利于提高出酒率。原料粉碎后可使其中的有害成分易于揮發(fā)排除出去,有利于提高成品酒的質(zhì)量。 2.粉碎要求 一般薯干原料經(jīng)過粉碎應(yīng)能通過直徑為1.5―2.5毫米的篩孔,高梁、玉米等原料也不應(yīng)低于這個標準。 3.粉碎設(shè)備及操作 薯干原料可用錘式粉碎機粉碎,高梁等粒狀原料可用磙式粉碎機破碎。目前許多工廠的粉碎設(shè)備已和原料的氣流輸送設(shè)備配套,勞動強度和勞動條件得到極大的改善(氣流輸送詳細內(nèi)容請參閱酒精工藝第二節(jié))。 (二)配料 1.配料的目的和要求 配料是白酒生產(chǎn)工藝的重要環(huán)節(jié),其目的是要通過主、輔原料的合理配比,給微生物的生長繁殖和生命活動創(chuàng)造良好的條件,并使原料中的淀粉在糖化酶和酒化酶的作用下,盡可能多地轉(zhuǎn)化成酒精。同時使發(fā)酵過程中形成的香味物質(zhì)得以保存下來,使成品白酒具備獨特的風格。配料時要根據(jù)原料品種和性質(zhì)、氣溫條件來進行安排,并考濾生產(chǎn)設(shè)備、工藝條件、糖化發(fā)酵劑的種類和質(zhì)量等因素,合理配科。 2.配料的主要依據(jù) 麩曲白酒的生產(chǎn)一般都在水泥池、石窖或大缸內(nèi)進行,發(fā)酵過程中無法調(diào)節(jié)溫度,只有適當控制入池淀粉濃度和入池溫度,才能保證整個發(fā)酵過程在適宜的溫度下進行。但入池溫度往往受到氣溫的限制,因此只有通過控制入池淀粉濃度來保證發(fā)酵過程中產(chǎn)生的熱量和酒精濃度,使不超過微生物正?;顒铀苋淌艿南薅?。 (1)熱量問題 酒精發(fā)酵是個放熱過程,熱量的產(chǎn)生有兩種途徑,即呼吸熱和發(fā)酵熱。產(chǎn)生呼吸熱的反應(yīng)式如下: C6H12O6十6O2? ――→ 6CO2十6H2O十熱量(2817千焦耳) 在麩曲白酒發(fā)酵時,因為氧氣少,所以呼吸熱在總熱量中占的比例很小,而是以發(fā)酵熱為主 的,其反應(yīng)式如下: C6H12O6? ――→2C2H5OH十2 CO2十熱量(83.6―96.1千焦耳) ? 根據(jù)測定,每100克葡萄糖在酒精發(fā)酵時生成下列主要產(chǎn)物: 發(fā)酵產(chǎn)物 數(shù)量(克) 熱能(千焦耳) 酒精 51.1 1500 甘油 3.1 60.2 琥珀酸 0.56 8.35 酵母殘渣 1.3 21.55 二氧化碳 49.2 0 合計 1590.1 每100克葡萄糖具有1660千焦耳熱量,因而在發(fā)酵過程中每100克葡萄糖能釋放出70千焦耳的熱量,相當于每克葡萄糖放出700焦耳的熱。根據(jù)淀粉水解生成葡萄糖的數(shù)量,即每克淀粉在酒精發(fā)酵時能放出770焦耳熱量。若以酒醅中含60%的水分計算,當酒醅中淀粉濃度由于發(fā)酵而降低1%時,酒醅溫度應(yīng)升高約2.4℃。考慮到熱量散失和發(fā)酵過程中產(chǎn)生其它成分的影響,發(fā)酵過程中當?shù)矸蹪舛认陆?%時,酒醅溫度實際約升高2℃左右。 發(fā)酵溫度的`高低與酵母的發(fā)酵力有著密切的關(guān)系。當溫度升高,又有酒精存在時,酵母的發(fā)酵力會受到很大抑制。較高溫度(例如36℃左右)會使酵母發(fā)酵到一定程度就停止。較低溫度下發(fā)酵(例如28℃左右),酵母的酶活力不易被破壞,發(fā)酵持續(xù)性強,對糖分的利用比較徹底,因而出酒率也較高。麩曲白酒在發(fā)酵過程中,由于固體酒醅的傳熱系數(shù)較小,無法采取降溫措施,只能靠控制入池溫度和入池淀粉濃度來調(diào)節(jié)發(fā)酵溫度,其中入池溫度又往往受到氣溫的影響,所以主要是利用適當?shù)娜氤氐矸蹪舛葋砜刂瞥貎?nèi)發(fā)酵溫度的變化,使發(fā)酵溫度在整個發(fā)酵過程中不超過一定的限度,保證發(fā)酵的正常進行。根據(jù)酵母的生理特性,要求發(fā)酵溫度最高不超過36℃6,若入池溫度控制在18―20℃左右,也就是在發(fā)酵過程中允許升溫在16―18℃左右的范圍,根據(jù)每消耗1%淀粉濃度醅溫約升高2℃計算,那末在發(fā)酵過程中可以消耗淀粉濃度9%左右,而一般酒醅的殘余淀粉濃度為5%左右,說明入池淀粉濃度應(yīng)控制在14―15%左右。如果采用續(xù)渣法生產(chǎn),因為酒醅反復發(fā)酵,入池淀粉濃度可以適當提高一些,可控制在15―16%左右。如果采用配糟一次發(fā)酵法生產(chǎn),因為配糟量較大(一般在1∶5左右),大多數(shù)酒糟可參與反復發(fā)酵,因此入池淀粉濃度可控制在13―14%左右。當然還要考慮到氣溫條件,原料品種和質(zhì)量等其它因素的影響,應(yīng)該根據(jù)具體情況進行靈活掌握。 (2)酒精濃度的問題 淀粉是產(chǎn)生酒精的源泉,在發(fā)酵過程中,當酒精達到一定的濃度時,會對微生物產(chǎn)生毒性,對酶起抑制作用,所以要在配料時注意適宜的淀粉濃度,使形成的酒精不超過微生物能忍受的限度。 根據(jù)淀粉經(jīng)水解形成葡萄糖,又經(jīng)酵母發(fā)酵轉(zhuǎn)化成酒精的反應(yīng)式計算,淀粉的理論出酒率為56.78%,或者說,每消耗1.53克淀粉可產(chǎn)生1毫升純酒精。 酵母的品種不同,耐酒精的能力也不一樣,一般在8.5%(容量),就明顯阻礙酵母繁殖,酒精濃度達到12―14%(容量)時,酵母逐步開始停止發(fā)酵。但對酵母發(fā)酵而言,還受到溫度、糖度、酵母品種等因素的影響。固體發(fā)酵白酒,酒醅所含水分較少,相對酒精濃度就較大,成熟酒醅中若含70%的水分,酒精濃度達7%(容量)時,那么相對酒精濃度就是10%(容量),這樣的酒精濃度對酵母發(fā)酵還不致造成很大影響。 霉菌的蛋白酶在酒精濃度達4―6%(容量)以上時,酶活力就會損失一半,而霉菌的淀粉酶在酒精濃度高達18―20%(容量)以上時,酶活力才開始受到抑制。 從以上分析中可以看出,只要控制一定的酒精濃度(例如一般8%),對霉菌糖化和酵母發(fā)酵不會產(chǎn)生多大的影響。 (3)pH值問題 入池淀粉濃度過高,發(fā)酵過猛,前期升溫過快,則因產(chǎn)酸細菌的生長繁殖,造成了酒醅酸度升高,影響出酒率和酒的質(zhì)量。但各種微生物和各種酶都是由蛋白質(zhì)所組成,微生物的生長和酶的作用都有適宜的pH值范圍,如果pH值過高或過低,就會抑制微生物的生長,使酶活性鈍化,影響發(fā)酵過程的正常進行。而適當?shù)膒H值可以增強酶活性,并能有效地抑制雜菌的生長繁殖。例如酵母菌繁殖的最適pH值為4.5―5.0,再低一些對酵母菌的生長繁殖影響也不大,但這樣低的pH值對雜菌會產(chǎn)生很大的抑制力,若培養(yǎng)基的pH值為4.2或更低一點時,僅酵母可以發(fā)育,而細菌則不能繁殖,所以用調(diào)節(jié)培養(yǎng)基的pH值,來抑制雜菌的生長是個有效的方法。目前工廠里根據(jù)長期實踐的經(jīng)驗,常用滴定酸度的高低來表示培養(yǎng)基或發(fā)酵醪中含酸量的多少。pH值是表示溶液中的H+濃度高低,而滴定酸度表示溶液中的總酸量,包括離解的酸和未離解的酸,它在某些情況下和pH值有一定的關(guān)系。麩曲白酒生產(chǎn)中,酸度最主要的來自酒醅,其次來自曲和酒母。在發(fā)酵過程中引起酸度增加的主要原因是雜菌的污染。 ? ? ? ? 3.填充材料 釀制麩曲白酒,在配料時往往需要加入填充料,目的是為了調(diào)整淀粉濃度,增加蔬松性,調(diào)節(jié)酸度,以利于微生物的生長和酶的作用,并能吸收漿水和保持酒精,為發(fā)酵和蒸餾創(chuàng)造良好的條件。常用填充材料的種類和特性見表4―20。選用填充科要田地制宜,注意其特點和所含有害成分的影響。 常用作填充料的是稻殼、小米殼、花生殼等。以吸水性講,玉米芯最大,這對出酒率有利。高梁殼含單寧較多,會影響糖化發(fā)酵。對酒的質(zhì)量來講,玉米芯含有較多的聚戊糖,生成的糠醛量較多。稻殼含有大量的硅酸鹽,用量過多,會影響酒精的飼料價值。所以在選用各種填充料時要全面考濾,合理使用。 固態(tài)法麩曲白酒生產(chǎn)中,目前配料時均配人大量酒糟,主要是為了稀釋淀粉濃度,調(diào)節(jié)酸度和疏松酒醅,并能供給微生物一些營養(yǎng)物質(zhì),同時酒糟通過多次反復發(fā)酵,能增加芳香物質(zhì),對提高成品白酒的質(zhì)量有利。雖然酒糟經(jīng)化驗還含有5%左右的殘余總糖,但主要是一些纖維素、淀粉l,6鍵結(jié)構(gòu)的片段以及其它一些還原性物質(zhì),這些物質(zhì)較難形成酒精,而被殘留在酒糟中。 4.配料的比例和方法 由于原料性質(zhì)不同、氣溫高低不同、酒糟所含殘余淀粉量不同及填充料特性的不同,配料比例應(yīng)有所變化。如果原料淀粉含量高,酒糟和其它填充料配入的比例也要增加;如果酒糟所含殘余淀粉量多,則要減少酒糟配比而增加稻殼或谷糠用量。填充料顆較粗,配入量可減少。根據(jù)經(jīng)驗計算,一般薯類原料和糧谷類原料,配料時淀粉濃度應(yīng)在14―16%左右為適宜。填充料用量占原料量的20―30%,根據(jù)具體情況作適當調(diào)整。糧醅比一般為1∶4―6。 例如以薯干粉為原料(以含淀粉為65%計算),采用清蒸一次發(fā)酵法生產(chǎn),原料配比為: 冬天 薯干粉∶鮮酒糟∶稻殼=1∶5∶0.25―0.35 夏天 薯干粉∶鮮酒糟∶稻殼 =1∶6―7∶0.25―0.35 配料時要求混和均勻,保持疏松。拌料要細致,混蒸時拌醅要盡量注意減少酒精的揮發(fā)損失,原料和輔科配比要準。 (三)蒸煮 1.蒸煮的目的 蒸煮是利用水蒸汽的熱能使淀粉顆粒吸水膨脹破裂,以便淀粉酶作用,同時借蒸煮把原料和輔料中的雜菌殺死,保證發(fā)酵過程的正常進行。在蒸煮時,原料和輔料中所含的有害物質(zhì)也可揮發(fā)排除出去。 2.蒸煮過程中的物質(zhì)變化 (1)淀粉 淀粉在蒸煮時先吸水膨脹,隨著溫度的升高,水和淀粉分子運動加劇,當溫度上升到60℃以上,淀粉顆粒會吸收大量水分,三維網(wǎng)組織迅速擴大膨脹,體積擴大50―100倍,淀粉粘度大大增加,呈海綿狀糊,這種現(xiàn)象稱為糊化。這時淀粉分子間的氫鍵就被破壞,使淀粉分子變成疏松狀態(tài),最后和水分子組成氫鍵,而被溶于水,有效地被淀粉酶糖化。 原料不同淀粉顆粒的大小、形狀、松緊程度也不同,因此蒸煮糊化的難易程度也有差異。麩曲白酒是采用固體發(fā)酵,原料蒸煮時一般都采用常壓蒸煮。由于要破壞植物細胞壁,又考慮到淀粉受到原料中蛋白質(zhì)和鹽類的保護,以及為了達到對原料的殺菌作用,所以實際蒸煮溫度都在100℃以上。 (2)蛋白質(zhì)及含氮有機物質(zhì) 由于常壓蒸煮,溫度不太高,蛋白質(zhì)在蒸煮過程中主要發(fā)生凝固變性,極少分解。而原料中氨態(tài)氮在蒸煮時便溶解于水,使可溶性氮增加,有利于微生物的作用。 (3)糖分 蒸煮過程中使戊糖脫水成
2 .5? 風? 炭寶寶竹炭――呵護您的健康 教學目標 1、了解風是怎樣形成的 2、知道風向、風速的表示方法和度量單位 3、學會用風向標、風速儀測定風向和風速的方法 4、了解風對人類活動和動物行為的影響 重點難點分析? 重點:風的觀測 難點:風的形成;目測風向、風速 教學過程 ◇視頻片段《赤壁之戰(zhàn)》引入課題《追尋風的足跡》。 演示并思考】把充滿氣體的氣球充氣口松開,會感到氣球內(nèi)的空氣一涌而出,這是為什么? 一、風 1、風是空氣的水平運動。 風是從高氣壓區(qū)流向低氣壓區(qū)的。 2、風的兩個基本要素:風向和風速 1)風向是指風吹來的方向。 天氣觀測和預報中常使用8種風向。 表示方法:用一短線段表示。 用紙飛機測風向 【為什么做】 風向和風速是測量風的兩個基本要素。觀測風向的儀器叫風向標,由箭頭、水平桿和尾翼三部分組成。那么風向標是怎樣指示風向的呢?風向是由風向標箭頭的方向來指示,還是由箭尾的方向來指示呢?風向又是怎么規(guī)定的呢?就讓我們用紙飛機測風向這個簡單的模擬實驗來解決吧! 【怎樣做】 折一紙飛機,中間用鉛筆穿過(要讓紙飛機能在鉛筆上輕松轉(zhuǎn)動)。用手握住鉛筆,將紙飛機放在開啟的電風扇前,觀察紙飛機的機頭和尾翼的指向。注意:此時人要站在紙飛機的后方。并借助指南針判斷風向。 【學到了什么】 通過實驗,使我們對風和風向有了一個直觀的認識:紙飛機的箭頭指向風來自的方向。同理,在氣象觀測中,風向是由風向標的箭頭指向的。 同時也使我們明白:實驗可以使我們更簡潔明了地了解事物,也培養(yǎng)了我們的觀察能力。 【進一步的研究】 (1)用紙飛機測風向的實驗使你明白了風向標指示風向的事實。你是否在想:這是運用了什么原理呢?為什么風向標會有一定的指向呢?下面的文字,會幫助你有一個了解。 風向標是一種應(yīng)用最廣泛的測量風向儀器的主要部件。在風的作用下,尾翼產(chǎn)生旋轉(zhuǎn)力矩使風向標轉(zhuǎn)動,并不斷調(diào)整指向桿指示風向。風向標感應(yīng)的風向必須傳遞到地面的指示儀表上,以觸點式最為簡單,風向標帶動觸點,接通代表風向的燈泡或記錄筆電磁鐵,作出風向的指示或記錄,但它的分辨只能做到一個方位(22.5°)。 地面風指離地平面10─12 米高的風。風的來向為風向,一般用十六方位或360°表示。以360°表示時,由北起按順時針方向度量。 (2)你知道了風向的`測量方法,一定很想知道風速大小的測量方法。其實你也可以用簡單的模擬實驗來測量風速。請認真閱讀下面的文字,你就會用生活中常見的小風車(參見三維風車式風速儀)或風壓板來簡單比較風速的大小了,動手試一試。 風向:指風吹來的? 方向? ;天氣觀測和預報中常使用8種風向,即:東、南、西、北、東北、西北、東南、西南(圖2―10)。 符號 ?代表東風。 (2)風速:指單位時間里空氣在水平方向上移動的距離,其單位是:米/秒、千米/時或海里/小時表示。 測試風速的儀器叫風速計,它利用風杯在風作用下的旋轉(zhuǎn)速度來測量風速。 風速儀有以下幾種:①風杯風速表②槳葉式風速表③熱力式風速表。 風速常用風級表示。 【閱讀】各風級的名稱、風速和目測結(jié)果 (3)風對人類的生活有很大的影響,有些動物的行為也和風有關(guān)。 【小結(jié)】 ?
1教學目標
(一)知識目標
1、使學生理解直角三角形中五個元素的關(guān)系,及什么是解直角三角形;2、會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.
(二)能力訓練點
1、通過綜合運用勾股定理,直角三角形的兩個銳角互余及邊角之間的關(guān)系解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力;2通過數(shù)行結(jié)合的運用,培養(yǎng)學生添加適當輔助線的能力。
(三)情感目標
滲透數(shù)形結(jié)合的數(shù)學思想,培養(yǎng)學生學以致用的良好的學習習慣.
2學情分析
九年級學生已經(jīng)牢固掌握了勾股定理,也剛剛學習過銳角三角函數(shù),但銳角三角函數(shù)的運用不一定熟練,綜合運用所學知識解決問題,將實際問題抽象為數(shù)學問題的能力都比較差,因此要在本節(jié)課進行有意識的培養(yǎng)。
為實現(xiàn)本節(jié)既定的教學目標,根據(jù)教材特點和學生實際水平對本節(jié)教學采用的基本策略是:
①創(chuàng)設(shè)問題情境,激發(fā)學生思維的主動性。
②以實際問題為載體,結(jié)合簡單教具及多媒體提供的圖象,引導學生建立數(shù)學模型,把實際問題抽象為數(shù)學問題。
③把實際問題中提供的條件轉(zhuǎn)化為數(shù)學問題中的數(shù)量,掌握探索解決問題的思想和方法。
④課堂盡量為學生提供探索、交流的空間,發(fā)動學生既獨立又合作的愉快的學習。
由于大部分學生的閱讀分析能力相對較弱,教學中引導學生討論、交流,羅列出問題中的所有已知條件、未知條件,探索已知與未知之間的數(shù)量關(guān)系,進而結(jié)合勾股定理、三角函數(shù)關(guān)系式尋求解決的方案,從而達到解決的目的。
有效的數(shù)學學習活動,不能單純地依賴模仿與記憶。動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。本節(jié)課的例題與練習題的已知、未知都有所不同,合理引導,利用這種“不同”讓學生在探究學習中得到提高,獲得知識,也是本節(jié)課追求的主要目標。
我打算采用“創(chuàng)設(shè)情境———自主探究———合作交流———達標訓練———反思歸納”的流程來進行本節(jié)課的教學。
3重點難點
1.重點:直角三角形的解法.
2.難點:把實際問題抽象為數(shù)學問題,建立數(shù)學模型;三角函數(shù)在解直角三角形中的靈活運用;j解直角三角形時,在已知的兩個元素中,為什么至少有一個元素是邊.
4教學過程4、1第一學時教學活動活動1【講授】教學活動
1.我們已經(jīng)掌握了Rt△ABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個元素(至少有一個是邊)后,就可求出其余的元素.這樣的導語既可以使學生大概了解解直角三角形的概念,同時又可啟發(fā)引導學生思考,為什么兩個已知元素中必有一條邊呢?從而激發(fā)學生的學習、探索熱情。
2.教師在學生思考后,繼續(xù)引導“為什么兩個已知元素中至少有一條邊?”讓全體學生的思維目標一致,在作出準確回答后,教師讓學生概括什么是解直角三角形?(由直角三角形中除直角外的兩個已知元素,求出所有未知元素的過程,叫做解直角三角形).
3.例題評析
例1在Rt△ABC中,∠C為直角,AC= BC=,解這個三角形.
例2在△ABC中,∠C為直角,∠A、∠B、∠C所對的邊分別為a、b、c,且b= 20 =35,解這個三角形(精確到0、1).
解直角三角形的方法很多,靈活多樣,學生完全可以自己解決,但例題具有示范作用.因此,此題在處理時,首先,應(yīng)讓學生獨立完成,培養(yǎng)其分析問題、解決問題的能力,同時滲透數(shù)形結(jié)合的思想.其次,教師組織學生比較各種方法中哪些較好,選一種板演.
完成之后引導學生小結(jié)“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當?shù)暮瘮?shù)關(guān)系式求另兩邊.計算時,利用所求的量如不比原始數(shù)據(jù)簡便的話,最好用題中原始數(shù)據(jù)計算,這樣誤差小些,也比較可靠,防止第一步錯導致一錯到底.
議一議
在直角三角形中,
(1)已知a,b,怎樣求∠B的度數(shù)?
(2)已知a,c,怎樣求∠B的度數(shù)?
(3)已知b,c,怎樣求∠B的度數(shù)?
你能總結(jié)一下已知兩邊解直角三角形的方法嗎?與同伴交流。
.
(三)鞏固練習
在△ABC中,∠C為直角,AC=4,BC=4,解此直角三角形。課本74頁。
1、找四名學生板演,重視過程的規(guī)范性和完整性;2、學生獨立完成,教師簡評。
解直角三角形是解實際應(yīng)用題的基礎(chǔ),因此必須使學生熟練掌握.為此,教材配備了練習針對各種條件,使學生熟練解直角三角形,并培養(yǎng)學生運算能力.
試一試
(四)總結(jié)與擴展
引導學生小結(jié):
1、在直角三角形中,除直角外還有五個元素,知道兩個元素(至少有一個是邊),就可以求出另三個元素.
2、解決問題要結(jié)合圖形(沒有圖形時要先畫草圖)。
二、基礎(chǔ)知識:
1、在傾斜角為300的山坡上種樹,要求相鄰兩棵數(shù)間的水平距離為3米,
2、升國旗時,某同學站在離旗桿底部20米處行注目禮,當國旗升至旗
桿頂端時,該同學視線的仰角為300,若雙眼離地面1.5米,則旗桿
3、如圖:B、C是河對岸的兩點,A是對岸岸邊一點,測得∠ACB=450,
BC=60米,則點A到BC的距離是 米。
3、如圖所示:某地下車庫的入口處有斜坡AB,其坡度I=1:1.5,
則AB=
三、典型例題:
例2、右圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30米,兩樓間的距
線的夾角為300時,求甲樓的影子在乙樓上有多高?
例3、如圖所示:某貨船以20海里/時的速度將一批重要貨物由A處運往正西方的B處,
經(jīng)過16小時的航行到達,到達后必須立即卸貨,此時接到氣象部門通知,一臺
風中心正以40海里/時的速度由A向北偏西600方向移動,距離臺風中心200海
里的圓形區(qū)域(包括邊界)均會受到影響。
(1)問B處是否會受到臺風的影響?請說明理由。
(2)為避免受到臺風的影響,該船應(yīng)該在多少小時內(nèi)卸完貨物?
四、鞏固提高:
的.位置升高 米。
2、如圖:A市東偏北600方向一旅游景點M,在A市東偏北300的
公路上向前行800米到達C處,測得M位于C的北偏西150,
A、sin450 B、sin600 C、cos300 D、cos600
A向外移動到A,使梯子的底端A到墻根O的距離等于3米,
5、如圖所示:某學校的教室A處東240米的O點處有一貨物,經(jīng)過O點沿北偏西600
方向有一條公路,假定運貨車輛形成的噪音影響范圍在130米以內(nèi)。
(1)通過計算說明,公路上車輛的噪音是否對學校造成影響?
(2)為了消除噪音對學校的影響,計劃在公路邊修一段隔音墻,請你計算隔音墻的
教學目標:
1、認識等腰直角三角形,知道等腰直角三角形各部分名稱、各個角的度數(shù)和各條邊的關(guān)系。
2、通過實踐操作,拓寬學生的解題渠道,誘發(fā)求異思維,培養(yǎng)創(chuàng)新意識。
3、采用小組合作的學習方式,體驗探索知識的過程,培養(yǎng)合作意識和集體精神。
教學過程:
一、創(chuàng)設(shè)情景,揭示課題。
1、學生拿出課前準備好的正方形紙沿對角線對折。
提問:得到一個什么圖形?(三角形)
2、通過觀察、測量和比較說說這個三角形的特征。
(兩條邊相等,一個角是直角)
提問:那么,這樣的三角形我們叫它什么三角形?
揭示課題,板書:等腰直角三角形
這節(jié)課就讓我們一起來研究等腰直角三角形。
二、動手操作,探索新知。
1、斜邊
45
直角邊
認識各部分名稱和各個角的度數(shù)。
投影出示一個等腰直角三角形讓學生試說。
邊說邊課件演示。
45
90
接著讓學生指著折成的等腰直角三角形同桌
直角邊
互相說各部分名稱和每個角的度數(shù)。
教學建議
1.知識結(jié)構(gòu):
本小節(jié)主要學習解直角三角形的概念,直角三角形中除直角外的五個元素之間的關(guān)系以及直角三角形的解法.
2.重點和難點分析:
教學重點和難點:直角三角形的解法.
本節(jié)的重點和難點是直角三角形的解法.為了使學生熟練掌握直角三角形的解法,首先要使學生知道什么叫做解直角三角形,直角三角形中三邊之間的關(guān)系,兩銳角之間的關(guān)系,邊角之間的關(guān)系.正確選用這些關(guān)系,是正確、迅速地解直角三角形的關(guān)鍵.
3. 深刻認識銳角三角函數(shù)的定義,理解三角函數(shù)的表達式向方程的轉(zhuǎn)化.
銳角三角函數(shù)的定義:
實際上分別給了三個量的關(guān)系:a、b、c是邊的長、、和是由用不同方式來決定的三角函數(shù)值,它們都是實數(shù),但它與代數(shù)式的不同點在于三角函數(shù)的值是有一個銳角的數(shù)值參與其中.
當這三個實數(shù)中有兩個是已知數(shù)時,它就轉(zhuǎn)化為一個一元方程,解這個方程,就求出了一個直角三角形的未知的元素.
如:已知直角三角形ABC中,,求BC邊的長.
?
畫出圖形,可知邊AC,BC和三個元素的關(guān)系是正切函數(shù)(或余切函數(shù))的定義給出的,所以有等式
,
由于,它實際上已經(jīng)轉(zhuǎn)化了以BC為未知數(shù)的代數(shù)方程,解這個方程,得
.
即得BC的長為.
又如,已知直角三角形斜邊的長為35.42cm,一條直角邊的長29.17cm,求另一條邊所對的銳角的大小.
?
畫出圖形,可設(shè)中,,于是,求的大小時,涉及的三個元素的關(guān)系是
也就是
這時,就把以為未知數(shù)的代數(shù)方程轉(zhuǎn)化為了以為未知數(shù)的方程,經(jīng)查三角函數(shù)表,得
.
由此看來,表達三角函數(shù)的定義的4個等式,可以轉(zhuǎn)化為求邊長的方程,也可以轉(zhuǎn)化為求角的方程,所以成為解三角形的重要工具.
4. 直角三角形的解法可以歸納為以下4種,列表如下:
?
5. 注意非直角三角形問題向直角三角形問題的轉(zhuǎn)化
由上述(3)可以看到,只要已知條件適當,所有的直角三角形都是可解的.值得注意的是,它不僅使直角三角形的計算問題得到徹底的解決,而且給非直角三角形圖形問題的解決鋪平了道路.不難想到,只要能把非直角三角形的圖形問題轉(zhuǎn)化為直角三角形問題,就可以通過解直角三角形而獲得解決.請看下例.
例如,在銳角三角形ABC中,,求這個三角形的未知的邊和未知的角(如圖)
?
這是一個銳角三角形的解法的問題,我們只需作出BC邊上的高(想一想:作其它邊上的高為什么不好.),問題就轉(zhuǎn)化為兩個解直角三角形的問題.
在Rt中,有兩個獨立的條件,具備求解的條件,而在Rt中,只有已知條件,暫時不具備求解的條件,但高AD可由解時求出,那時,它也將轉(zhuǎn)化為可解的直角三角形,問題就迎刃而解了.解法如下:
解:作于D,在Rt中,有
;
又,在Rt中,有
∴
又,
∴?
于是,有
由此可知,掌握非直角三角形的圖形向直角三角形轉(zhuǎn)化的途徑和方法是十分重要的,如
(1)作高線可以把銳角三角形或鈍角三角形轉(zhuǎn)化為兩個直角三角形.
?
(2)作高線可以把平行四邊形、梯形轉(zhuǎn)化為含直角三角形的圖形.
?
(3)連結(jié)對角線,可以把矩形、菱形和正方形轉(zhuǎn)化為含直角三角形的圖形.
?
(4)如圖,等腰三角形AOB是正n邊形的n分之一.作它的底邊上的高,就得到直角三角形OAM,OA是半徑,OM是邊心距,AB是邊長的一半,銳角.
?
6. 要善于把某些實際問題轉(zhuǎn)化為解直角三角形問題.
很多實際問題都可以歸結(jié)為圖形的計算問題,而圖形計算問題又可以歸結(jié)為解直角三角形問題.
我們知道,機器上用的螺絲釘問題可以看作計算問題,而圓柱的側(cè)面可以看作是長方形圍成的(如圖).螺紋是以一定的角度旋轉(zhuǎn)上升,使得螺絲旋轉(zhuǎn)時向前推進,問直徑是6mm的螺絲釘,若每轉(zhuǎn)一圈向前推進1.25mm,螺紋的初始角應(yīng)是多少度多少分?
?
據(jù)題意,螺紋轉(zhuǎn)一周時,把側(cè)面展開可以看作一個直角三角形,直角邊AC的長為
,
另一條直角邊為螺釘推進的距離,所以
,
設(shè)螺紋初始角為,則在Rt中,有
∴.
即,螺紋的初始角約為 .
這個例子說明,生產(chǎn)和生活中有很多實際問題都可以抽象為一個解直角三角形問題,我們應(yīng)當注意培養(yǎng)這種把數(shù)學知識應(yīng)用于實際生活的意識和能力.
一、教學目標
1.使學生掌握直角三角形的邊角關(guān)系,會運用勾股定理、直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形;
2.通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力;
3.通過本節(jié)的.學習,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學思想,培養(yǎng)他們良好的學習習慣.
二、重點·難點·疑點及解決辦法
1.重點:直角三角形的解法。
2.難點:三角函數(shù)在解直角三角形中的靈活運用。
3.疑點:學生可能不理解在已知的兩個元素中,為什么至少有一個是邊。
4.解決辦法:設(shè)置疑問,引導學生主動發(fā)現(xiàn)方法與途徑,解決重難點,以相似三角形知識為背景解決疑點。
三、教學步驟
(一)明確目標
1.在三角形中共有幾個元素?
2.如圖直角三角形ABC中,這五個元素間有哪些等量關(guān)系呢?
(1)邊角之間關(guān)系
?
(2)三邊之間關(guān)系
(勾股定理)
(3)銳角之間關(guān)系? 。
以上三點正是解直角三角形的依據(jù),通過復習,使學生便于應(yīng)用。
(二)整體感知
教材在繼銳角三角函數(shù)后安排解直角三角形,目的是運用銳用三角函數(shù)知識,對其加以復習鞏固。同時,本課又為以后的應(yīng)用舉例打下基礎(chǔ)。因此在把實際問題轉(zhuǎn)化為數(shù)學問題之后,就是運用本課——解直角三角形的知識來解決的。綜上所述,解直角三角形一課在本章中是起到承上啟下作用的重要一課。
(三)教學過程()
1.我們已掌握Rt的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個元素(至少有一個是邊)后,就可求出其余的元素。這樣的導語既可以使學生大概了解解直角三角形的概念,同時又陷入思考,為什么兩個已知元素中必有一條邊呢,激發(fā)了學生的學習熱情。
2.教師在學生思考后,繼續(xù)引導“為什么兩個已知元素中至少有一條邊?”讓全體學生的思維目標一致,在作出準確回答后,教師請學生概括什么是解直角三角形?(由直角三角形中除直角外的兩個已知元素,求出所有未知元素的過程,叫做解直角三角形)。
3.例題
【例1】? 在中,為直角,所對的邊分別為,且,解這個三角形。
解直角三角形的方法很多,靈活多樣,學生完全可以自己解決,但例題具有示范作用。因此,此題在處理時,首先,應(yīng)讓學生獨立完成,培養(yǎng)其分析問題、解決問題能力,同時滲透數(shù)形結(jié)合的思想。其次,教師組織學生比較各種方法中哪些較好,選一種板演。
解:(1),
(2),
∴
(3)
∴
完成之后引導學生小結(jié)“已知一邊一角,如何解直角三角形?”
答:先求另外一角,然后選取恰當?shù)暮瘮?shù)關(guān)系式求另兩邊。計算時,利用所求的量如不比原始數(shù)據(jù)簡便的話,最好用題中原始數(shù)據(jù)計算,這樣誤差小些,也比較可靠,防止第一步錯導致一錯到底。
【例2】? 在Rt中,,解這個三角形。
在學生獨立完成之后,選出最好方法,教師板書。
解:(1),
查表得;
(2)
(3),
∴。
注意:例1中的b和例2中的c都可以利用勾股定理來計算,這時要查平方表和平方根表,這樣做有時會比上面用含四位有效數(shù)字的數(shù)乘(或除)以另一含四位有效數(shù)字的數(shù)要方便一些。但先后要查兩次表,并作一次加法(或減法)或者使用計算器求平方、平方根及三角正數(shù)值等。
4.鞏固練習
解直角三角形是解實際應(yīng)用題的基礎(chǔ),因此必須使學生熟練掌握。為此,教材配備了練習P.23中1、2練習1針對各種條件,使學生熟練解直角三角形;練習2代入數(shù)據(jù),培養(yǎng)學生運算能力。
[參考答案]
1.(1);
(2)由求出或;
(3),
或;
(4)或。
2.(1);
(2)。
說明:解直角三角形計算上比較繁瑣,條件好的學校允許用計算器。但無論是否使用計算器,都必須寫出解直角三角形的整個過程。要求學生認真對待這些題目,不要馬馬虎虎,努力防止出錯,培養(yǎng)其良好的學習習慣。
(四)總結(jié)擴展
1.請學生小結(jié):在直角三角形中,除直角外還有五個元素,知道兩個元素(至少有一個是邊),就可以求出另三個元素。
2.幻燈片出示圖表,請學生完成
?
四、布置作業(yè)
教材P.32習題6.4A組3。
[參考答案]
3.;
五、板書設(shè)計
?
課本116頁練習題的第1、2、3題。
1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精確到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精確到1’,長度精確到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精確到0.01cm)
目的:使學生鞏固利用直角三角形的有關(guān)知識解決實際問題,提高學生分析問題、解決問題的能力,此環(huán)節(jié)用時約6分鐘。
(四)課堂小結(jié)
讓學生自己小結(jié)這節(jié)課的收獲,教師補充、糾正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的條件是除直角外的兩個元素,且至少需要一邊,即已知兩邊或已知一邊一銳角。
3、解直角三角形的方法:
(1)已知兩邊求第三邊(或已知一邊且另兩邊存在一定關(guān)系)時,用勾股定理(后一種需設(shè)未知數(shù),根據(jù)勾股定理列方程);
(2)已知或求解中有斜邊時,用正弦、余弦;無斜邊時,用正切;
(3)已知一個銳角求另一個銳角時,用兩銳角互余。
目的:學生回顧本堂課的收獲,體會如何從條件出發(fā),正確選用適當?shù)倪吔顷P(guān)系解題,此環(huán)節(jié)用時約6分鐘。
(五)學生作業(yè)(此環(huán)節(jié)用時約6分鐘)
課本120頁習題4、3A組第1、2、3題。
1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精確到1’),a、b(精確到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精確到1’),b、c(精確到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精確到0、01cm)以及∠A、∠B(精確到1’)。
四、教學評價
《新課程標準》提出了學生學習的方式是:“自主探索、動手實踐、合作交流、勇于創(chuàng)新”。因此根據(jù)本節(jié)課的內(nèi)容,為了更好地培養(yǎng)學生的創(chuàng)造能力,在教學中我注重引導學生運用探究學習的方法進行學習,確保了學生學習的有效性,激發(fā)了學生學習的欲望,學生真正成為了課堂的主人,在學生陳述自己探究結(jié)果時,我對學生不完整或不準確的回答適當?shù)夭捎醚舆t性評價,不僅培養(yǎng)了學生對數(shù)學語言的表達能力和概括能力,同時充分挖掘了學生的潛能,也為學生提供了合作學習的空間,讓學生在合作交流中提出問題并解決問題,從而發(fā)展了學生的合作探究能力。
一、 教材簡析:
本章內(nèi)容屬于三角學,它的主要內(nèi)容是直角三角形的邊角關(guān)系及其實際應(yīng)用,教材先從測量入手,給學生創(chuàng)設(shè)學習情境,接著研究直角三角形的邊角關(guān)系---銳角三角函數(shù),最后是運用勾股定理及銳角三角函數(shù)等知識解決一些簡單的實際問題。其中前兩節(jié)內(nèi)容是基礎(chǔ),后者是重點。這主要是因為解直角三角形的知識有較多的應(yīng)用。解直角三角形的知識,可以被廣泛地應(yīng)用于測量、工程技術(shù)和物理中,主要是用來計算距離,高度和角度。教科書中的應(yīng)用題,內(nèi)容比較廣泛,具有綜合技術(shù)教育價值,解決這類問題需要進行運算,但三角中的運算和邏輯思維是密不可分的;為了便于運算,常需要先選擇公式并進行變換,同時,解直角三角形的應(yīng)用題和課題學習也有利于培養(yǎng)學生空間想象的能力,即要求學生通過對實物的觀察,或根據(jù)文字語言中的某些條件畫出適合它們的圖形,總之,解三角形的應(yīng)用題與課后學習可以培養(yǎng)學生的三大數(shù)學能力和分析解決問題的能力。
同時,解直角三角形還有利于數(shù)形結(jié)合。通過這一章的學習,學生才能對直角三角形的概念有較為完整的認識。另外有些簡單的幾何圖形可分解為一些直角三角形的組合,從而也能用本章的知識加以處理。以后學生學習斜三角形的余弦定理,正弦定理和任意三角形的面積公式時,也要用到解直角三角形的知識。
二、教學目的、重點、難點:
教學目的:使學生了解解直角三角形的概念,能熟練應(yīng)用解直角三角形的知識解決實際問題,培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力。
重點:1、讓學生了解三角函數(shù)的意義,熟記特殊角的三角函數(shù)值,并會用銳角三角函數(shù)解決有關(guān)問題。
2、正確選擇邊與角的關(guān)系以簡便的解法解直角三角形
難點:把實際問題轉(zhuǎn)化為數(shù)學問題。
學會用數(shù)學問題來解決實際問題即是我們教學的目的也是我們教學的歸宿。根據(jù)課標的要求,要盡量把解直角三角形與實際問題聯(lián)系,減少單純解三角形的習題。而要在實際問題中,要使學生養(yǎng)成先畫圖,再求解的習慣。還要引導學生合理地選擇所要用的邊角關(guān)系。
三、教學目標:
1、知識目標:
(1)經(jīng)歷由情境引出問題,探索掌握有關(guān)的數(shù)學知識內(nèi)容,再運用于實踐的過程,培養(yǎng)學數(shù)學、用數(shù)學的意識與能力。
(2)通過實例認識直角三角形的邊角關(guān)系,即銳角三角函數(shù);知道30、
45角的三角函數(shù)值;會使用計算器由已知銳角求它的三角函數(shù)值,由已知三角函數(shù)值求它對應(yīng)的角。
(3)運用三角函數(shù)解決與直角三角形有關(guān)的簡單的實際問題。
(4)能綜合運用直角三角形的勾股定理與邊角關(guān)系解決簡單的實際問題、
2、能力目標:培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題并進行解決的能力,進而提高學生形象思維能力;滲透轉(zhuǎn)化的思想。
3、情感目標:培養(yǎng)學生理論聯(lián)系實際,敢于實踐,勇于探索的精神.
四、、教法與學法
1、教法的設(shè)計理念
根據(jù)基礎(chǔ)教育課程改革的具體目的,結(jié)合注重開放與生成,構(gòu)造充滿生命活力的課堂教學體系。改變課堂過于注重知識傳授的傾向,強調(diào)形成積極主動的學習態(tài)度,關(guān)注學生的學習興趣和體驗,讓學生主動參與學習活動,并引導學生在課堂活動中感悟知識的生成,發(fā)展與變化。在教學過程中由學生主動去發(fā)現(xiàn),去思考,留有足夠的時間讓他們?nèi)ゲ僮?,體現(xiàn)以學生為主體的原則;而教師為主導,采用啟發(fā)探索法、講授法、討論法相結(jié)合的教學方法。這樣,使學生通過討論,實踐,形成深刻印象,對知識的掌握比較牢靠,對難點也比較容易突破,同時也培養(yǎng)了學生的數(shù)學能力。
2、學法
學生在小學就接觸過直角三角形,先學習了銳角三角函數(shù),所以這節(jié)課內(nèi)容學生可以接受。本節(jié)的學習使學生初步掌握解直角三角形的方法,培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力。通過圖形和器具的演示調(diào)動學生的學習積極性,同時讓學生通過觀察、思考、操作,體驗轉(zhuǎn)化過程,真正學會用數(shù)學知識解決實際的問題。
第一方面:教材分析
1、本節(jié)的地位作用
《解直角三角形》,是前面學過的相似及函數(shù)問題的`延續(xù)和綜合應(yīng)用,同時也是高中繼續(xù)學習解斜三角形的重要預備知識。它的學習還蘊含著數(shù)學建模和轉(zhuǎn)化化歸的數(shù)學思想,所以,本節(jié)內(nèi)容無論在本單元,還是整個初中教材甚至中考中都具有重要的地位。
2、學習目標
由于本節(jié)課是第一課時,主要是使學生理解直角三角形的邊角關(guān)系,并能運用關(guān)系解直角三角形和與之相關(guān)的實際問題,所以我參考課標提出的階段性要求,確立本節(jié)的教學目標是:
(1)會根據(jù)直角三角形已知元素,解直角三角形。
(2)通過對解直角三角形的學習,我們能感知未知元素與已知元素的關(guān)系,體會知識點之間的內(nèi)在聯(lián)系。
(3)培養(yǎng)學生問題意識,滲透轉(zhuǎn)化思想和數(shù)學建模意識。
3、本節(jié)課重點是解直角三角形,這是因為它和相似等知識一樣,是以后會解題的重要工具,將被廣泛的應(yīng)用。
難點是選擇合適的邊角關(guān)系。這是因為在解直角三角形時,需要學生根據(jù)已知條件,結(jié)合圖形,經(jīng)過分析,選擇準確簡單的關(guān)系式,而學生剛學三角函數(shù),應(yīng)用還不靈活,所以感到困難。
第二方面:教法分析
本節(jié)課我選用了引導發(fā)現(xiàn)法和歸納總結(jié)法,并應(yīng)用了媒體教學。這是因為課標提出“教學活動是師生之間,學生之間交往互動與共同發(fā)展的過程,教師是教學活動的引導者與合作者?!边@兩種方法可以讓老師成為導演,學生扮演演員,充分發(fā)揮學生的主體地位。而媒體的使用可以滿足學生的好奇心,課堂容量增大,最大限度的提高課堂效率。
第三方面:學法指導
為了充分發(fā)揮導學案的以案導學的作用,在學案中我根據(jù)學習內(nèi)容的需要,增加了“老師溫馨提示”欄目,讓學生在課前預習時降低學習難度,能夠跳一跳,摘到桃子。在教學時,我注意引導學生養(yǎng)成及時歸納、總結(jié)規(guī)律方法,有目的學習的好習慣。
第四方面:教學程序設(shè)計
本節(jié)課的教學我按照學案導學的“學——研——展——教——達”的教學模式展開。
1、在學這個教學環(huán)節(jié),我在課前下發(fā)學案,讓學生在學案的引領(lǐng)下,充分感知本節(jié)課要學習的內(nèi)容,記錄預習疑惑,及查閱相關(guān)資料。及時發(fā)現(xiàn)自身學習本節(jié)內(nèi)容的不足之處,在上課時能夠積極思考,合作,交流,展示。
2、在研這個環(huán)節(jié),我精心設(shè)計問題,將本節(jié)的唯一知識點———解直角三角形,遵照“由特殊到一般”的原則轉(zhuǎn)變?yōu)樘剿餍詥栴}的問題點、能力點,既學案中第二個大問題的里4個小問題,通過對知識點的教師設(shè)疑、學生質(zhì)疑、解釋、歸納總結(jié)等一系列師生研討活動,得出解直角三角形的定,挖掘出它的內(nèi)涵和外延,從而激發(fā)學生主動思考,逐步培養(yǎng)學生探究精神以及對教材的分析,歸納,演繹的能力,讓學生學會看書,學會自學,進而突出本節(jié)重點。
3、在展這個環(huán)節(jié)我以本節(jié)例題即學案中的例1為基礎(chǔ),采用變式訓練,逐漸增加問題難度,讓學生在不同的問題中,多角度領(lǐng)悟本節(jié)重點知識——解直角三角形問題的實質(zhì),通過“兵教兵,兵強兵,兵練兵”的方法,讓學生充分展示和反饋,幫助學生理解解直角三角形的注意事項,及怎樣選擇合適的邊角關(guān)系式,怎樣引輔助線,怎樣寫解題過程等問題,達到突破本節(jié)難點的目的。
4、在教這個環(huán)節(jié)我在學生理解解直角三角形方法的基礎(chǔ)上,應(yīng)用它解決生活中的實際問題,即學案上拓展提升問題,它實質(zhì)也是本節(jié)例題的一個變式訓練,培養(yǎng)學生一題多變,一題多解的思維方式,讓學生體會數(shù)學知識的螺旋上升美。并且我精選了貼近學生生活情境的實際背景,寓德育與數(shù)學一體,生活與數(shù)學一體。激發(fā)學生的學習興趣,提升學生的創(chuàng)新思維和合作意識,讓數(shù)學思維好的同學吃的飽,使不同的人在數(shù)學上有不同的發(fā)展。
5、通過達標檢測這個環(huán)節(jié),及時反饋本節(jié)學生存在的問題,當堂點評,充分發(fā)揮小組的合作精神。
6、作業(yè)緊緊圍繞鞏固本節(jié)所學內(nèi)容展開,有一定的梯度,讓不同程度的學生都有所收獲。板書設(shè)計本著重點突出的原則,讓學生對本節(jié)課的主要知識一目了然,加深印象。
第五方面:設(shè)計理念
在設(shè)計本節(jié)課時,我力求讓學生意識到:要解決老師課堂上提出的問題,看書不看詳細不行,只看書不思考不行,思考不深不透還不行,如本節(jié)的復習提問部分,我雖然在導學案中給出了,但我在提問時卻換了一個方式提問,目的讓學生真正理解學案內(nèi)容。而不是照著學案念,在講授本節(jié)課時,我盡量實現(xiàn)自己角色的轉(zhuǎn)變,讓自己從講臺走下來,成為“平等中的首席”。
總之,我盡量創(chuàng)設(shè)適當和適合的教育情境,因為我知道,如果將15克鹽放在我面前,無論如何都難以下咽,但是,把它放在鮮美的湯中,在享受佳肴時,15克鹽早已被吸收。情境之余知識,猶如湯之余鹽,鹽要溶入湯中,才能被吸收;知識需要溶入情境中,才能顯示出活力和美感!
感謝您閱讀“幼兒教師教育網(wǎng)”的《2024解直角三角形課件匯編》一文,希望能解決您找不到幼師資料時遇到的問題和疑惑,同時,yjs21.com編輯還為您精選準備了直角三角形課件專題,希望您能喜歡!
相關(guān)推薦
為了讓學生更好地掌握上課所學知識,老師需要提前準備教案,不能草率了事。教案是評價和總結(jié)教學過程的重要材料。筆者費心打造了這篇“解直角三角形課件”,希望能受到大家的青睞,供參考和使用,希望大家能夠收藏并分享!...
感謝您提出的要求欄目小編為您找到了一篇符合的“解直角三角形教案”,誠懇地邀請您留意閱讀該文。老師的工作職責之一就是制作教案和課件,因此我們老師需要付出認真的努力來編寫。一份優(yōu)秀的教案是成功教學的重要保證。...
教案課件是每個老師在開學前需要準備的東西,每個老師對于寫教案課件都不陌生。寫好教案,完整課堂教學不再是夢,網(wǎng)絡(luò)有沒有優(yōu)質(zhì)的教案課件以資借鑒呢?幼兒教師教育網(wǎng)特別編輯了“解直角三角形教案”,有需要的朋友就來看看吧!...
最新更新